ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2021, Vol. 42 ›› Issue (4): 524752-524752.doi: 10.7527/S1000-6893.2020.24752
• Review • Previous Articles Next Articles
LI Ni, BU Shuhui, SHANG Bolin, LI Yongbo, TANG Zhili, ZHANG Weiwei
Received:
2020-09-14
Revised:
2020-10-23
Published:
2020-12-25
Supported by:
CLC Number:
LI Ni, BU Shuhui, SHANG Bolin, LI Yongbo, TANG Zhili, ZHANG Weiwei. Aircraft intelligent design: Visions and key technologies[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524752-524752.
[1] CAMBONE S A, KRIEG K J, PACE P, et al. Unmanned aircraft systems roadmap 2005-2030[J]. Office of the Secretary of Defense, 2005, 8:4-15. [2] NATO.Science & technology trends 2020-2040[R].NATO, 2020 [3] WANG Z Y, ZHANG W W, WU X J, et al. A novel unsteady aerodynamic reduced-order modeling method for transonic aeroelastic optimization[J]. Journal of Fluids & Structures, 2018, 82:308-328. [4] 石波. 飞机总体设计优化及软件开发[D]. 西安:西北工业大学, 2005. SHI B. Aircraft conceptual design and software development[D]. Xi'an:Northwestern Polytechnical University, 2005(in Chinese). [5] 王晓青. 飞机总体参数设计与软件开发[D]. 西安:西北工业大学, 2003. WANG X Q. Aircraft conceptual parameters design and software development[D]. Xi'an:Northwestern Polytechnical University, 2003(in Chinese). [6] 周健, 龚春林, 粟华, 等. 飞行器体系优化设计问题[J]. 航空学报, 2018, 39(11):222235. ZHOU J, GONG C L, SU H, et al. Optimal design problem of system of systems of flight vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):222235(in Chinese). [7] 符拯, 任晓军. 飞行器全寿命周期多学科设计体系及其关键技术[J]. 战术导弹控制技术, 2012, 29(2):51-55. FU Z, REN X J. Multidisciplinary design system and its key technologies for the entire life cycle of aircraft[J]. Tactical Missle Technology, 2012, 29(2):51-55(in Chinese). [8] 邓仲华, 李志芳. 科学研究范式的演化——大数据时代的科学研究第四范式[J]. 情报资料工作, 2013, 34(4):19-23. DENG Z H, LI Z F. The evolution of scientific research paradigm:the fourth paradigm of scientific research in the era of big data[J]. Information and Documentation Services, 2013, 34(4):19-23(in Chinese). [9] 杨伟. 关于未来战斗机发展的若干讨论[J].航空学报, 2020, 41(6):524377. YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524377(in Chinese). [10] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1):522480. CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522480(in Chinese). [11] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:a path to revolutionary computational aerosciences[R]. Washington, D.C.:NASA, 2014. [12] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese). [13] 李润泽, 张宇飞, 陈海昕. ‘人在回路’思想在飞机气动优化设计中演变与发展[J]. 空气动力学学报, 2017, 35(4):529-543. LI R Z, ZHANG F Y, CHEN X H. Evolution and development of "man-in-loop" in aerodynamic optimization design[J]. Acta Aerodynamica Sinica, 2017, 35(4):529-543(in Chinese). [14] 何开锋, 钱炜祺, 汪清, 等. 数据融合技术在空气动力学研究中的应用[J]. 空气动力学学报, 2014, 32(6):777-782. HE K F, QIAN W Q, WANG Q, et al. Application of data fusion technology in aerodynamics Research[J]. Acta Aerodynamica Sinica, 2014, 32(6):777-782(in Chinese). [15] LUO C, HU Z, ZHANG S L, et al. Adaptive space transformation:An invariant based method for predicting aerodynamic coefficients of hypersonic vehicles[J]. Engineering Applications of Artificial Intelligence, 2015, 46:93-103. [16] KOU J, ZHANG W. Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils[J]. Applied Mathematical Modelling, 2019, 76:832-855. [17] 王刚. 高超声速粘性干扰效应数据关联方法研究[D].绵阳:中国空气动力研究与发展中心, 2016. WANG G. Research on data association method of hypersonic viscous interference effect[D]. Mianyang:China Aerodynamics Research and Development Center, 2016(in Chinese). [18] LI D, ZHAO S, DA R A, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100:46-62. [19] 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报, 2014, 35(1):29-45. LENG J S, SUN J, LIU Y J. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):29-45(in Chinese). [20] LI K, KOU J, ZHANG W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3):2157-2177. [21] WANG Z, ZHANG W, WU X, et al. A novel unsteady aerodynamic reduced-order modeling method for transonic aeroelastic optimization[J]. Journal of Fluids and Structures, 2018, 82:308-328. [22] HUANG D, ROKITA T, FRIEDMANN P P. An aerothermoelastic analysis framework enhanced by model order reduction with applications[C]//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, & Materials Conference, 2017. [23] CROWELL A R, MILLER B A, MCNAMARA J J. Robust and efficient treatment of temperature feed-back in fluid-thermal-structural analysis[J]. AIAA Journal, 2014, 52(11):2395-2413. [24] MURAVYOV A A, RIZZI S A. Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures[J]. Computers & Structures, 2003, 81(15):1513-1523. [25] HUANG D, FRIEDMANN P P. An aerothermoelastic analysis framework with reduced-order modeling applied to composite panels in hypersonic flows[J]. Journal of Fluids and Structures, 2020, 94:102927. [26] 张天姣, 钱炜祺, 周宇, 等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展, 2019, 10(1):5-15. ZHANG T J, QIAN W Q, ZHOU Y, et al. Preliminary thinking on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1):5-15(in Chinese). [27] LADICKY L, JEONG S, SOLENTHALER B, et al. Data-driven fluid simulation using regression forests[J]. ACM Transactions on Graphics, 2015, 34(6):199. [28] GUO X X, LI W, LORIO F. Convolutional neural networks for steady flow approximation[C]//ACM Sig KDD International Conference, 2016:481-490. [29] 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11):1-10. LIU D T, GUO K, WANG B K, et al. Summery and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11):1-10(in Chinese). [30] 李鹏, 潘凯, 刘小川. 美国空军机体数字孪生计划的回顾与启示[J]. 航空科学技术, 2020, 31(9):1-10. LI P, PAN K, LIU X C. Retrospect and enlightenment of the AFRL airframe digital twin program[J]. Aeronautical Science & Technology, 2020, 31(9):1-10(in Chinese). [31] 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2020, 41(3):023981. DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):023981(in Chinese). [32] LI Y, WANG X, SI S, et al. Entropy based fault classification using the Case Western Reserve University data:A benchmark study[J]. IEEE Transactions on Reliability, 2020(2):754-767. [33] 刘魁, 王潘, 刘婷. 数字孪生在航空发动机运行维护中的应用[J]. 航空动力, 2019(4):70-74. LIU K, WANG P, LIU T. The application of digital twin in aero engine operation and maintenance[J]. Aerospace Power, 2019(4):70-74(in Chinese). [34] 隋少春, 许艾明, 黎小华, 等. 面向航空智能制造的DT与AI融合应用[J]. 航空学报, 2020, 41(7):7-17. SUI S C, XU A M, LI X H, et al. Fusion application of DT and AI for aviation intelligent manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):7-17(in Chinese). [35] 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9):023615. MENG S H, YE Y G, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):023615(in Chinese). [36] 陈伟, 朱保魁. 战斗机无人化难以破解的四个难题[J]. 飞航导弹, 2014(2):30-32. CHEN W, ZHU B K. Four difficult problems in unmanned fighter jets[J]. Aerodynamic Missile Journal, 2014(2):30-32(in Chinese). [37] 吴立珍, 沈林成, 牛轶峰, 等. 无人机战场环境感知与理解技术研究[J]. 系统仿真学报, 2010, 22(S1):79-84. WU L Z, SHEN L C, NIU Y F, et al. Research on battle environmental sensing and perception methodology for unmanned aerial vehicle[J]. Journal of System Simulation, 2010, 22(S1):79-84(in Chinese). [38] 符文星, 郭行, 闫杰. 智能无人飞行器技术发展趋势综述[J]. 无人系统技术, 2019, 2(4):31-37. FU W X, GUO X, YAN J. Overview on the technology development trend of intelligent unmanned aerial vehicle[J]. Unmanned Systems Technology, 2019, 2(4):31-37(in Chinese). [39] 姜洪开, 邵海东, 李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7):27-34. JIANG H K, SHAO H D, LI X Q. Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering, 2019, 55(7):27-34(in Chinese). [40] 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21):49-56. LEI Y G, JIA F, ZHOU X, et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21):49-56(in Chinese). [41] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104. LEI Y G, JIA F, KONG D T, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104(in Chinese). [42] Gonzalesd. Network-centric warfare[J]. Betascript Publishing, 2010, 43(6):55-61. [43] 王国庆, 谷青范, 王淼, 等. 新一代综合化航空电子系统构架技术研究[J]. 航空学报, 2014, 35(6):1473-1486. WANG G Q, GU Q F, WANG M, et al. Research on the architecture technology for new generation integrated avionics system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1473-1486(in Chinese). [44] 王琳. 飞行器射频隐身技术及发展思路[J]. 电讯技术, 2013, 53(8):973-976. WANG L. RF stealth technology and development thoughts on aviation platform[J]. Telecommunication Engineering, 2013, 53(8):973-976(in Chinese). [45] WOLFIG R, JAKOVLJEVIC M. Distributed IMA and DO-297:Architectural, communication and certification attributes[C]//Digital Avionics Systems Conference, 2008. [46] ANNIGHÖFER B, THIELECKE F. A systems architecting framework for optimal distributed integrated modular avionics architectures[J]. Ceas Aeronautical Journal, 2015, 6(3):485-496. [47] 逯计划, 薛楠. 一种机载AFDX网络管理系统的研究与实现[J]. 信息通信, 2017(1):62-63. LU J H, XUE N. Research and implementation of an airborne AFDX network management system[J]. Information & Communications, 2017(1):62-63(in Chinese). [48] 邢亮. 基于AADL的分布式综合模块化航电系统架构建模与分析[J]. 电光与控制, 2020, 27(2):64-69, 97. XING L. System architecture modeling and analysis of distributed integrated modular avionics based on AADL[J]. Electronics Optics & Control, 2020, 27(2):64-69, 97(in Chinese). [49] 汤艳飞, 张伟栋. 综合核心处理机架构分析与设计[J]. 航空计算技术, 2020, 50(4):101-105. TANG Y F, ZHANG W D. Analysis and design of integrated core processor architecture[J]. Aeronautical Computing Technique, 2020, 50(4):101-105(in Chinese). [50] 汪欣. 分布式综合模块化航电系统的建模与优化设计研究[D]. 南京:南京航空航天大学, 2018:1-12. WANG X. Research on the model and optimization method for distributed integrated modular avionics[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:1-12(in Chinese). [51] TAHIR A, BLING J M, HAGHBAYAN M H, et al. Swarms of unmanned aerial vehicles-a survey[J]. Journal of Industrial Information Integration, 2019, 16:100106. [52] CHEN W, LIU J, GUO H, et al. Toward robust and intelligent drone swarm:challenges and future directions. IEEE Network, 2020, 34(4):278-283. [53] BAKKER T, KLENKE R H. Dynamic multi-task allocation for collaborative unmanned aircraft systems[C]//Aerospace Sciences Meeting, 2013. [54] JONES D, TAMIZ M. Practical goal programming[M]. Boston:Springer US, 2010:481-483. [55] CHUNG S J, PARANJAPE A A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018(4):1-19. [56] 黄蓓, 朱黔, 马骏. 敏捷组态的常规飞行器指挥决策系统架构设计[J]. 指挥控制与仿真, 2020, 42(5):80-84. HUANG B, ZHU Q, MA J. Architecture design of maneuverable command and decision system for conventional aircraft[J]. Command Control & Simulation, 2020, 42(5):80-84(in Chinese). [57] CHEN J, SUN J, WANG J, et al. Cooperative communication based on swarm intelligence:vision, model, and key technology[J]. Scientia Sinica Informationis. 2020, 50(3):307-317. [58] KHELIFI H, LUO S, NOUR B, et al. Bringing deep learning at the edge of information-centric internet of things[J]. IEEE Communications Letters, 2019, 23(1):52-55. [59] KOUSHIK A M, HU F, KUMAR S. Deep Q-learning based node positioning for throughput-optimal communications in dynamic UAV swarm network[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3):554-566. [60] 吴微露, 丁亚非. 军用认知无线电通信系统关健技术研究[C]//2010年中国通信国际会议论文集. 南宁:中国通信学会, 2010. WU W L, DING Y F. Research on key technologies of military cognitive radio communication system[C]//2010 International Conference on Communications in China. Nanning:China Institute of Communications, 2010(in Chinese). [61] 杨浩, 姜斌, 徐清. 编队控制的容错最短通信拓扑结构设计[C]//第八届中国多智能体系统与控制会议, 2012:27-32. YANG H, JIANG B, XU Q. Fault-tolerant shortest connection topology design for formation control[C]//MASC' 2012, 2012:27-32(in Chinese). [62] PAUL S, PATTERSON S, VARELA C A. Collaborative situational awareness for conflict-aware flight planning[C]//IEEE/AIAA Digital Avionics Systems Conference, 2020. [63] 梁晓龙, 胡利平, 张佳强, 等. 航空集群自主空战研究进展[J]. 科技导报, 2020, 38(15):74-88. LIANG X L, HU L P, ZHANG J Q, et al. Research status and prospect of aircraft swarms autonomous air combat[J]. Science & Technology Review, 2020, 38(15):74-88(in Chinese). [64] 黄汉桥, 白俊强, 周欢, 等. 智能空战体系下无人协同作战发展现状及关键技术[J]. 导航与控制, 2019, 18(1):10-18. HUANG H Q, BAI J Q, ZHOU H, et al. Present situation and key technologies of unmanned cooperative operation under intelligent air combat system[J]. Navigation and Control, 2019, 18(1):10-18(in Chinses). [65] 吴文海, 张源原, 周思羽, 等. 飞行员助手项目综述[J]. 航空学报, 2016, 37(12):3563-3577. WU W H, ZHANG Y Y, ZHOU S Y, et al. Overview of pilot's associate program[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3563-3577(in Chinese). [66] 李风雷, 卢昊, 宋闯, 等. 智能化战争与无人系统技术的发展[J]. 无人系统技术, 2018, 1(2):14-23. LI F L, LU H, SONG C, et al. Development of intelligent warfare and unmanned system technology[J]. Unmanned Systems Technology, 2018, 1(2):14-23(in Chinese). [67] 徐琳, 周自力, 艾尔, 等. 基于大数据的未来智能空战研究[J]. 飞航导弹, 2020(10):41-46. XU L, ZHOU Z L, AI E, et al. Research on future intelligent air combat based on big data[J]. Aerodynamic Missile Journal, 2020(10):41-46(in Chinese). [68] 安世亚太流体产品业务部. ANSYS Fluent航空气动噪声解决方案[J]. 航空制造技术, 2012(9):95-96. Asia-pacific Fluid Products Business Division. ANSYS Fluent for aerodynamic noise solution[J]. Aeronautical Manufacturing Technology, 2012(9):95-96(in Chinese). [69] 沈清, 杨武兵, 庄逢甘. 航天飞行器中的湍流问题[J]. 现代防御技术, 2012, 40(1):21-25. SHEN Q, YANG W B, ZHUANG F G. Turbulence of aerospacecraft[J]. Modern Refence Technology, 2012, 40(1):21-25(in Chinese). [70] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51:357-377. [71] 张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3):444-451. ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3):444-451(in Chinese). [72] TENNEY A S, GLSAUSER M N, RUSCHER C J, et al. Application of artificial neural networks to stochastic estimation and jet noise modeling[J]. AIAA Journal, 2020, 58(2):647-658. [73] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606. XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):589-606(in Chinese). [74] LI X D, ZHANG L. Knowledge graphs[J]. Chinese Journal of Engineering Mathematics, 2000(5):33-40. [75] RAMACHANDRAM D, TAYLOR G W. Deep multimodal learning:a survey on recent advances and trends[J]. IEEE Signal Processing Magazine, 2017, 34(6):96-108. [76] 宋闯, 赵佳佳, 王康梁, 等. 面向智能感知的小样本学习研究综述[J]. 航空学报, 2020, 41(S1):15-28. SONG C, ZHAO J J, WANG K L, et al. A survey of few shot learning based on intelligent perception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):15-28(in Chinese). [77] SUN Q, LIU Y, CHUA T S, et al. Meta-transfer learning for few-shot learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [78] TAN C, SUN F, KONG T, et al. A survey on deep transfer learning[C]//International Conference on Artificial Neural Networks, 2018:270-279. [79] 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4):023732. WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms:review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):023732(in Chinese). [80] 邹立岩, 张明智, 荣明. 智能无人机集群概念及主要发展趋势分析[J]. 战术导弹技术, 2019(5):1-11. ZHOU L Y, ZHANG M Z, RONG M. Analysis of intelligent unmanned aircraft systems swarm concept and main development trend[J]. Tactical Missile Technology, 2019(5):1-11(in Chinese). [81] 许瑞明. 无人机集群作战涌现机理及优化思路研究[J]. 军事运筹与系统工程, 2018, 32(2):14-17. XU R M. A study on the emergence mechanism and optimization ideas of UAV swarm operations[J]. Military Operations Research and Systems Engineering, 2018, 32(2):14-17(in Chinese). [82] 齐智敏, 黄谦, 张海林. 智能无人集群任务规划系统架构设计[J]. 军事运筹与系统工程, 2019, 33(3):26-30. QI Z M, HUANG Q, ZHANG H L. Architecture design of intelligent unmanned cluster mission planning system[J]. Military Operations Research and Systems Engineering, 2019, 33(3):26-30(in Chinese). [83] 冉惟之. 基于群体智能的无人机集群协同对抗系统的设计与实现[D]. 成都:电子科技大学, 2020:1-8. RAN W Z. Design and implementation of cooperative adversarial system based on swarm intelligence for unmanned aerial vehicles[D]. Chengdu:University of Electronic Science and Technology of China, 2020:1-8(in Chinese). [84] 关莹, 熊键, 陈鸣, 等. 集群作战能力涌现初探[J]. 电子信息对抗技术, 2019, 34(1):22-26. GUAN Y, XIONG J, CHEN M, et al. Primary study on ability emergence of swarms[J]. Electronic Information Warfare Technology, 2019, 34(1):22-26(in Chinese). [85] 伊山, 黄谦, 杨鹏飞. 智能无人集群体系作战仿真系统功能与架构设计[J]. 指挥控制与仿真, 2020, 42(5):65-69. YI S, HUANG Q, YANG P F. Function and architecture design of intelligent unmanned cluster SoS operation simulation system[J]. Command Control & Simulation, 2020, 42(5):65-69(in Chinese). [86] 段海滨, 李沛. 基于生物群集行为的无人机集群控制[J]. 科技导报, 2017, 35(7):17-25. DUAN H B, LI P. Autonomous control for unmanned aerial vehicle swarms based on biological collective behaviors[J]. Science & Technology Review, 2017, 35(7):17-25(in Chinese). [87] 罗德林, 徐扬, 张金鹏. 无人机集群对抗技术新进展[J]. 科技导报, 2017, 35(7):26-31. LUO D L, XU Y, ZHANG J P. New progresses on UAV swarm confrontation[J]. Science & Technology Review, 2017, 35(7):26-31(in Chinese). |
[1] | Yanhua ZHANG, Dengcheng ZHANG, Zhangwen ZHOU, Yuchang LEI, Lin LI. Concept and design of virtual rudder surface aircraft based on circulation control: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629608-629608. |
[2] | Shengzhe SHAN, Weiwei ZHANG. Air combat intelligent decision-making method based on self-play and deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328723-328723. |
[3] | Jinyi MA, Can WANG, Tao XUE, Jianliang AI, Yiqun DONG. Development and illustrative applications of an air combat engagement database [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727538-727538. |
[4] | Weishi CHEN, Jia LIU, Qingbin WANG, Xianfeng LU, Jie ZHANG, Xiaolong CHEN, Yifeng HUANG. Review on technology of bird detection with weather radar [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 26781-026781. |
[5] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[6] | Linkun HE, Wenchao XUE, Ran ZHANG, Huifeng LI. Guidance and control for powered descent and landing of launch vehicles: Overview and outlook [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628462-628462. |
[7] | Yiming LIANG, Guangning LI, Min XU. Method for numerical virtual flight with intelligent control based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128098-81280986. |
[8] | Yuwei LIU, Yuqiang CHENG, Jianjun WU. Research progress of intelligent control methods in space propulsion systems [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528505-528505. |
[9] | Xiaoqian CHEN, Yong ZHAO, Senlin HUO, Zeyu ZHANG, Bingxiao DU. A review of topology optimization design methods for multi-scale structures [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528863-528863. |
[10] | DUAN Yucong, WANG Xuede, ZHOU Xin, ZHANG Peiyu, GUO Xiyang, CHENG Xing, FAN Junwei. Machine learning of emission intensity signal of laser powder bed fusion molten pool [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 425855-425855. |
[11] | WEN Qian, YANG Jiawei, WU Zeping, YANG Xixiang, ZHAO Hailong, WANG Zhixiang. An approximation modeling method of launch vehicles improved by fast cross-validation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 225967-225967. |
[12] | WANG Hao, CHEN Genliang. Research progress and perspective of robotic equipment applied in aviation assembly [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 626128-626128. |
[13] | LI Haiquan, CHEN Xiaoqian, ZUO Linxuan, ZHAO Zhuolin. Surrogate model for flight load analysis based on random forest [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 225640-225640. |
[14] | WU Zixuan, ZHANG Ning, GAO Kaiye, PENG Rui. Flight trip fuel volume prediction based on random forest with adjustment to risk preference [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 224933-224933. |
[15] | HU Qinglei, SHAO Xiaodong, YANG Haoyang, DUAN Chao. Spacecraft attitude planning and control under multiple constraints: Review and prospects [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527351-527351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341