[1] ELROD C W. Review of titanium application in gas turbine engines[C]//Proceedings of ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. New York: ASME 2009: 649-656. [2] STROBRIDGE T, MOULDER J, CLARK A. Titanium combustion in turbine engines: NBSIR-79-1616[R]. Boulder: National Bureau of Standards, 1979. [3] MI G B, HUANG X, CAO J X, et al. Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(8): 2270-2275. [4] HUANG X, CAO C X, MA J M, et al. Titanium combustion in aeroengines and fire-resistant titanium alloys[J]. Journal of Materials Engineering, 1997, 25(8): 11-15 (in Chinese). 黄旭, 曹春晓, 马济民, 等. 航空发动机钛燃烧及阻燃钛合金[J]. 材料工程, 1997, 25(8): 11-15. [5] CHEN G. Frequent Ti-alloy fired accidents[J]. International Aviation, 2009(3): 45-47 (in Chinese). 陈光. 频发的发动机钛着火故障[J]. 国际航空, 2009(3): 45-47. [6] MI G B, HUANG X, CAO J X, et al. Ignition resistance performance and its theoretical analysis of Ti-V-Cr type fireproof titanium alloys[J]. Acta Metallurgica Sinica, 2014, 50(5): 575-586 (in Chinese). 弭光宝, 黄旭, 曹京霞, 等. Ti-V-Cr系阻燃钛合金的抗点燃性能及其理论分析[J]. 金属学报, 2014, 50(5): 575-586. [7] WANG C, HU J, WANG F, et al. Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection[J]. Review of Scientific Instruments, 2018, 89(4): 044902. [8] SHAO L, XIE G L, ZHANG C, et al. Combustion of metals in oxygen-enriched atmospheres[J]. Metals, 2020, 10(1): 128. [9] LI G P, LI D, LIU Y Y, et al. On the burn resistance of Ti-35V-15Cr-0.05C titanium alloy[J]. Acta Metallurgica Sinica (English Letters), 1998, 11(3): 202-206. [10] DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 022763 (in Chinese). 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6): 022763. [11] MI G B, LIANG X Y, LI P J, et al. Numerical calculation and analysis of friction ignition characteristics of aero-engine titanium alloy at micro-scale[J]. Aeronautical Manufacturing Technology, 2020, 63(16): 68-74, 85 (in Chinese). 弭光宝, 梁贤烨, 李培杰, 等. 航空发动机钛合金在微尺度下摩擦着火特性数值计算分析[J]. 航空制造技术, 2020, 63(16): 68-74, 85. [12] MI G B, HUANG X, CAO J X, et al. Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition[J]. Acta Physica Sinica, 2016, 65(5): 056103 (in Chinese). 弭光宝, 黄旭, 曹京霞, 等. 摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征[J]. 物理学报, 2016, 65(5): 056103. [13] MI G B, CAO C X, HUANG X, et al. Ignition resistance performance and its mechanism of TC11 titanium alloy for aero-engine[J]. Journal of Aeronautical Materials, 2014, 34(4): 83-91 (in Chinese). 弭光宝, 曹春晓, 黄旭, 等. 航空发动机用TC11钛合金抗点燃性能及机理研究[J]. 航空材料学报, 2014, 34(4): 83-91. [14] MI G B, HUANG X, CAO J X, et al. Experimental technique of titanium fire in aero-engine[J]. Journal of Aeronautical Materials, 2016, 36(3): 20-26 (in Chinese). 弭光宝, 黄旭, 曹京霞, 等. 航空发动机钛火试验技术研究新进展[J]. 航空材料学报, 2016, 36(3): 20-26. [15] SUI N, MI G B, YAN M Q, et al. Burning products of TA15 titanium alloy by friction oxygen concentration method[J]. Rare Metals, 2018, 37(11): 952-960. [16] ZHAO Y Q, ZHOU L, DENG J. Role of interface in burn of titanium alloys[J]. Journal of Aeronautical Materials, 1999, 19(1): 29-33 (in Chinese). 赵永庆, 周廉, 邓炬. 界面在钛合金燃烧过程中的作用[J]. 航空材料学报, 1999, 19(1): 29-33. [17] SHAO L, XIE G L, LI H Y, et al. Combustion behavior and mechanism of Ti14 titanium alloy[J]. Materials, 2020, 13(3): 682. [18] FOX D. Investigation of titanium combustion characteristics and suppression techniques: AFAPL-TV-75-73[R]. Wright-Patterson AFB: Air Force Aero Propulsion Lab, 1976. [19] WANG R J, FU B Y, SHI M. Titanium fire drop method tester and testing method: CN103033536A[P]. 2013-04-10 (in Chinese). 汪瑞军, 傅斌友, 史萌. 一种钛火液滴法试验装置及其测试方法: CN103033536A[P]. 2013-04-10. [20] BAO M Y, WANG Y Q, XU Z P, et al. Research on evaluation of burn resistant coatings properties of titanium alloys by droplet ignition method[J]. New Technology & New Process, 2020(7): 60-62 (in Chinese). 鲍曼雨, 王亦奇, 徐召朋, 等. "熔滴法"评价钛合金阻燃层性能技术研究[J]. 新技术新工艺, 2020(7): 60-62. [21] FU B Y, WANG R J, SHI M, et al. Study on performance of burn-resistant coating deposited by micro-arc ion surface modification technology[J]. Transactions of the China Welding Institution, 2015, 36(6): 19-22, 114 (in Chinese). 傅斌友, 汪瑞军, 史萌, 等. 微弧离子沉积阻燃涂层及其性能[J]. 焊接学报, 2015, 36(6): 19-22, 114. [22] WANG R J, MA X B, BAO M Y. A study on mechanical properties of combustion-resistant and thermal barrier functional coating prepared on titanium alloy surface[J]. Journal of Xiangtan University (Natural Science Edition), 2019, 41(6): 27-34 (in Chinese). 汪瑞军, 马小斌, 鲍曼雨. 钛合金表面阻燃隔热复合功能涂层力学性能研究[J]. 湘潭大学学报(自然科学版), 2019, 41(6): 27-34. [23] YANG J L, CHEN H X. Ignition mechanism of combustible materials by an embedded hot metal particle[J]. Journal of Combustion Science and Technology, 2014, 20(4): 329-334 (in Chinese). 杨玖玲, 陈海翔. 高温金属颗粒作用下可燃物的点燃机理[J]. 燃烧科学与技术, 2014, 20(4): 329-334. [24] WEBER R O, SIDHU H S, SAWADE D M, et al. Using the method of lines to determine critical conditions for thermal ignition[J]. Journal of Engineering Mathematics, 2006, 56(2): 185-200. [25] STAGGS J E. A theoretical investigation of initiation of travelling combustion fronts in fuel beds from embedded hotspots[J]. Journal of Fire Sciences, 2012, 30(5): 437-456. [26] KUZNETSOV G V, MAMONTOV G Y, TARATUSHKINA G V. Numerical simulation of ignition of a condensed substance by a particle heated to high temperatures[J]. Combustion, Explosion and Shock Waves, 2004, 40(1): 70-76. [27] WANG B, TIAN W. Combustion morphology and mechanism analysis of titanium alloy TC4[J]. Gas Turbine Experiment and Research, 2013, 26(3): 50-52, 28 (in Chinese). 王标, 田伟. TC4钛合金燃烧形貌和机理分析[J]. 燃气涡轮试验与研究, 2013, 26(3): 50-52, 28. [28] GLASSMAN I. Metal combustion processes: 473[R]. Princeton: Princeton University, 1959. [29] KHAIKIN B I, BLOSHENKO V N, MERZHANOV A G. On the ignition of metal particles[J]. Combustion, Explosion and Shock Waves, 1970, 6(4): 412-422. [30] WILSON D B, STOLTZFUS J M. Fundamentals of metals ignition in oxygen[M]//Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Eighth Volume. West Conshohocken: ASTM International, 2009: 272. [31] TAKAHASHI T, MINAMINO Y, HIRASAWA H, et al. High-temperature oxidation and its kinetics study of Ti-Al and Ti-V alloys in air[J]. Materials Transactions, 2014, 55(2): 290-297. [32] CHICARDI E, CÓRDOBA J M, GOTOR F J. Kinetics of high-temperature oxidation of (Ti, Ta)(C, N)-based cermets[J]. Corrosion Science, 2016, 102: 168-177. [33] OVIEDO C. Oxidation kinetics of pure titanium at low pressures[J]. Journal of Physics: Condensed Matter, 1993, 5(33A): A153-A154. [34] ANDERSON V, MANTY B. Titanium alloy ignition and combustion: NADC 76083-30[R]. West Palm Beach: Pratt and Whitney Aircraft Group, 1978. [35] LITTMAN F E, CHURCH F M, KINDERMAN E M. A study of metal ignitions I. The spontaneous ignition of titanium[J]. Journal of the Less Common Metals, 1961, 3(5): 367-378. [36] BOLOBOV V I. Theory of ignition of metals at fracture[J]. Combustion, Explosion, and Shock Waves, 2012, 48(6): 689-693. [37] BOLOBOV V I. Possible mechanism of autoignition of titanium alloys in oxygen[J]. Combustion, Explosion and Shock Waves, 2003, 39(6): 677-680. [38] ELROD C, RIVIR R, RABE D. Laser ignition of titanium AFAPL-TR-76-12[R]. Wright-Patterson AFB: Air Force Aero Propulsion Lab, 1976. [39] BOLOBOV V I. Auto-ignition problem titanium of oxygen and possible ways of solving[M]//Advances in Mechanical Engineering. Cham: Springer International Publishing, 2015: 13-22. |