[1] TRUMP D J. Executive order on maintaining american leadership in artificial intelligence[EB/OL]. (2019-02-11)[2020-11-01].http://www.whitehouse.gov/presidential-actions/excutieve-order-maintaining-american-lead-ership-artificial-intelligence. [2] US Department of Defense. Summary of the 2018 department of defense artificial intelligence strategy[R]. Washington, D.C.:Department of Defense, 2019. [3] US Department of Defense. 2019 The United States Air Force artificial intelligence annex to the Department of Defense artificial intelligence strategy[R]. Washington,D.C.:Department of The Air Force, 2019. [4] Artificial intelligence and national security (updated November 10, 2020)[R]. Washington, D.C.:Congressional Research Service, 2020. [5] SCHARRE P, RⅡKONEN A. Defense technology strategy[R]. Washington D. C.:Center for a New American Security, 2020. [6] MCCARTHY J, MINSKY M L, ROCHESTER N, et al. A proposal for the dartmouth summer research project on artificial intelligence[J]. AI Magazine, 2006, 27(4):1-2. [7] RUSSELL S J, NORVIG P. 人工智能:一种现代方法(第3版)[M]. 北京:清华大学出版社, 2013:3-18. RUSSELL S J, NORVIG P. Artificial intelligence a modern approach, third edition[M].Beijing:Tsinghua University Press, 2013:3-18(in Chinese). [8] 李德毅, 于剑. 人工智能导论[M]. 北京:中国科学技术出版社, 2018:2-8. LI D Y, YU J. Introduction to artificial intelligence[M].Beijing:China Science & Technology Press, 2018:2-8(in Chinese). [9] 陈小平. 人工智能的历史进步、目标定位和思维演化[J]. 开放时代, 2018,6:31-48. CHEN X P. Artificial intelligence:Its historical progress,reconsideration of its final target,and evolution of its thinking mode[J]. Open Times, 2018,6:31-48(in Chinese). [10] National defense authorization act for fiscal year 2019:116-333[R]. Washington, D.C.:House of Representatives, 2018. [11] 雷宏杰,姚呈康. 面向军事应用的航空人工智能技术架构研究[J]. 导航定位与授时, 2020,7(1):1-11. LEI H J, YAO C K. Technical architecture of aviation artificial intelligence for military application[J]. Navigation Positioning & Timing, 2020,7(1):1-11(in Chinese). [12] 黄铁军,余肇飞,刘怡俊. 类脑机的思想与体系结构综述[J]. 计算机研究与发展, 2019, 56(6):1135-1148. HUANG T J, YU Z F, LIU Y J. Brain-like machine:Thought and architecture[J]. Journal of Computer Research and Development, 2019, 56(6):1135-1148(in Chinese). [13] NILSON N J. Artificial intelligence[R]. Information Processing, 1974:778-801. [14] 陈小平. 封闭性场景:人工智能的产业化路径[J]. 文化纵横, 2020(2):34-42. CHEN X P. Closed scenario:Industrialization path of AI[J]. Beijing Cultural Review, 2020(2):34-42(in Chinese). [15] HINTZ E A. Understanding the four types of AI, from reactive robots to self-aware beings[EB/OL]. (2016-11-18)[2020-11-01]. https://observer.com/2016/11/understanding-the-four-types-of-ai-from-reactive-robots-to-self-aware-beings/. [16] STEPHAN D S, MATTHIJS M, TIM S. Artificial intelligence and the future of defense[M]. Hague:The Hague Centre for Strategic Studies, 2017. [17] 中国电子技术标准化研究院. 人工智能标准化白皮书(2018版)[EB/OL]. (2018-01-24)[2020-11-01].http://www.cesi.cn/images/editor/20180124/20180124135528742.pdf. China Electronics Standardization Institute. Artificial intelligence white paper (2018)[EB/OL]. (2018-01-24)[2020-11-01]. http://www.cesi.cn/images/editor/20180124/20180124135528742.pdf (in Chinese). [18] National Highway Traffic Safety Administration. Preliminary statement of policy concerning automated vehicles[EB/OL]. (2013-05-30)[2020-11-01]. https://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_Vehicles_Policy.pdf. [19] SAE International. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles[EB/OL]. (2016-10-02)[2020-11-01].https://pdfs.semanticscholar.org/5962/a3287865a8453ddc7832340df322ea0f0bd0.pdf?_ga=2.33077626.551604543.1608343293-699443072.1608191097. [20] ILACHINSKI A. AI, robots, and swarms (issues, questions, and recommended studies)[R]. Center for Naval Analyses, 2017. [21] SHERIDAN T B. Automation, authority and angst revisitedin human factors society[M]. Washington,D.C.:Human Factors &Ergonomics Society Press, 1991. [22] 刘树光,茹乐,王柯. 无人机自主性评价方法新进展[J].飞航导弹, 2019(2):43-49. LIU S G, RU L, WANG K. New development of evaluation methods for UAV autonomous level[J]. Aerodynamic Missile Journal, 2019(2):43-49(in Chinese). [23] PARASURAMAN R, SHERIDAN T B, WICKENS C D. A model for types and levels of human interaction with automation[J]. IEEE Transactions on Systems Man and Cybernetics Part A, 2000, 30(3):286-297. [24] Office of the Secretary of Defense.Unmanned aerial vehicles roadmap 2000-2025[R]. Washington, D. C.:Office of the Secretary of Defense, 2001. [25] CLOUGH B T. Metrics, schmetrics! How do you track a UAV's autonomy?[C]//AIAA's 1 st Technical Conference and Workshop on Unmanned Aerospace Vehicles.Reston:AIAA, 2002. [26] PROUD R W, HART J J, MROZINSKI R B. Methods for determining the level of autonomy to design into a human spaceflight vehicle:a function specific approach[EB/OL]. (2015-03-16)[2020-11-01]. https://www.researchgate.net/publication/235167645_Methods_for_Determining_the_Level_of_Autonomy_to_Design_into_a_Human_Spaceflight_Vehicle_A_Function_Specific_Approach. [27] Office of the Secretary of Defense.Unmanned aerial vehicles roadmap:2002-2027[R]. Washington, D.C.:Office of the Secretary of Defense, 2002. [28] Office of the Secretary of Defense.Unmanned aircraft system roadmap:2005-2030[R]. Washington, D.C.:Office of the Secretary of Defense, 2005. [29] HUANG H M. Autonomy levels for unmanned systems (ALFUS) framework volume I:Terminology (Version 1.1)[R]. Gaithersburg:NIST Special Publication, 2004. [30] HUANG H M, ALBUS J S, MESSINA E R, et al. Specifying autonomy levels for unmanned systems:Interim report[C]//SPIE Defense and Security Symposium, 2004. [31] Unmanned systems integrated roadmap FY2011-2036[R]. Washington, D.C.:Department of Defense, 2011. [32] The role of autonomy in DoD systems[R]. Washington, D.C.:Department of Defense, Defense Science Board, 2012. [33] United States Air Force Office of the Chief Scientist Authors.Autonomous horizons system autonomy in the air force-a path to the future (volume I:Human-autonomy teaming)[R]. Washington, D.C.:United States Air Force, Office of the Chief Scientist, 2015. [34] ZACHARIAS G L. Autonomous horizons:The way forward[R]. Washington, D.C.:United States Air Force, Office of the Chief Scientist, 2019. [35] RUTH D, PAUL N. Summer study on autonomy[R]. Washington, D. C.:Defense Science Board, 2016. [36] Congressional Research Service.Artificial intelligence and national security (updated April 26, 2018)[R]. Washington, D.C.:Congressional Research Service, 2018. [37] Congressional Research Service.Artificial intelligence and national security (updated January 30, 2019)[R]. Washington, D.C.:Congressional Research Service, 2019. [38] MCDERMOTT J. R1:A rule-based configurer of computer systems[J]. Artificial Intelligence, 1982, 19(1):39-88. [39] SHELA B, CARL S. Lizza pilot's associate "a cooperative, knowledge-based system application"[R]. Washington, D.C.:Wright-Patterson Air Force Base, 1991. [40] MILLER C A, HANNEN M D. The rotorcraft pilot's associate:Design and evaluation of an intelligent user interface for cockpit information management[J]. Knowledge-Based Systems, 1999(12):443-456. [41] JONES R M, LAIRD J E, NIELSEN P E, et al. Automated intelligent pilots for combat flight simulation[C]//AAAI'98/IAAI'98:Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, 1999. [42] ERNEST N, CARROLL D, SCHUMACHER C, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1):1-7. [43] SCHRITTWIESER J, ANTONOGLOU I, HUBERT T, et al. Mastering atari, go, chess and shogi by planning with a learned model[EB/OL]. (2019-11-19)[2020-12-15]. https://arxiv.org/pdf/1911.08265v2.pdf. [44] 樊会涛, 闫俊. 自主化——机载导弹重要的发展方向[J]. 航空兵器, 2019, 26(1):1-10. FAN H T, YAN J. The important development direction of airborne missile:Autonomization[J]. Aero Weaponry, 2019, 26(1):1-10(in Chinese). [45] 刘代军, 王超磊. 空空导弹智能化技术的发展与展望[J]. 航空兵器, 2019, 26(1):25-29. LIU D J, WANG C L. Development and prospect of air-to-air missile intelligentization[J]. Aero Weaponry, 2019, 26(1):25-29(in Chinese). [46] 程进, 齐航, 袁健全,等. 关于导弹武器智能化发展的思考[J]. 航空兵器, 2019, 26(1):20-24. CHENG J, QI H, YUAN J Q, et al. Discussion on the development of intelligent missile technology[J]. Aero Weaponry, 2019, 26(1):20-24(in Chinese). [47] 孙毓凯, 孙斐, 任宏光,等. 直升机载空空导弹关键技术研究[J]. 航空兵器, 2020, 27(1):17-25. SUN Y K, SUN F, REN H G, et al. Study on key technologies of helicopter-borne air-to-air missiles[J]. Aero Weaponry, 2020, 27(1):17-25(in Chinese). [48] 陈伟, 孙洪忠, 齐恩勇,等. 智能化时代雷达导引头信号处理关键技术展望[J]. 航空兵器, 2019, 26(1):76-82. CHEN W, SUN H Z, QI E Y, et al. Key technology prospects of radar seeker signal processing in intelligent age[J]. Aero Weaponry, 2019, 26(1):76-82(in Chinese). [49] 郭玉霞, 刘功斌, 崔炳喆,等. 空空导弹雷达导引头信息处理智能化思考[J]. 航空兵器, 2020, 27(5):23-27. GUO Y X, LIU G B, CUI B Z, et al. Intelligentization of the radar guiding technology of air-to-air missile[J]. Aero Weaponry, 2020, 27(5):23-27(in Chinese). [50] GAUDET B, FURFARO R. Missile homing-phase guidance law design using reinforcement learning[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference.Reston:AIAA, 2012. [51] GAUDET B, LINARES R. Adaptive guidance with reinforcement meta-learning[EB/OL].(2019-01-12)[2020-11-01]. https://arxiv.org/pdf/1901.04473.pdf. [52] GAUDET B, FURFARO R. Reinforcement meta-learning for angle-only intercept guidance of maneuvering targets[C]//AIAA SciTech Forum.Reston:AIAA,2020. [53] HONG D, KIM M, PARK S. Study on reinforcement learning-based missile guidance law[J]. Applied Science, 2020, 10:6567. [54] LEI S, LEI Y L, ZHU Z. Research on missile intelligent penetration based on deep reinforcement learning[C]//3rd International Symposium on Big Data and Applied Statistics, 2020. [55] 雷永林, 姚剑, 朱宁,等. 武器装备作战效能仿真系统WESS[J]. 系统仿真学报, 2017, 29(6):1244-1252. LEI Y L, YAO J, ZHU N, et al. Weapon effectiveness simulation system (WESS)[J]. Journal of System Simulation. 2017, 29(6):1244-1252(in Chinese). [56] YAN X H, ZHU J H, KUANG M C, et al. Missile aerodynamic design using reinforcement learning and transfer learning[J]. Science China Information Sciences, 2018, 61(11):119204:1-119204:3. [57] 王晓海. 认知雷达系统技术发展综述[J]. 数字通信世界, 2018(S1):40-43. WANG X H. Overview of cognitive radar system[J]. Digital Communication World, 2018(S1):40-43(in Chinese). [58] HAYKIN S. Cognitive radar——a way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1):30-40. [59] 金林. 智能化认知雷达综述[J]. 现代雷达, 2013, 35(11):6-11. JIN L. Overview of cognitive radar with intelligence[J]. Modern Radar, 2013, 35(11):6-11(in Chinese). [60] HINTON G E, OSINDERO S, THE Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. [61] KRIZHEVSKY A, SUTSKEVER H, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105. [62] GURBUZ S Z, GRIFFITHS H D, CHARLISH A, et al. An overview of cognitive radar:past, present, and future[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(12):6-18. [63] 何积丰. 安全可信人工智能[J]. 信息安全与通信保密, 2019(10):5-8. HE J F. Secure and trusted artificial intelligence[J]. Information Security and Communications Privacy, 2019(10):5-8(in Chinese). [64] 崔鹏, 邓柯, 王国豫,等. 安全可信智能的可能技术路径[J]. 中国计算机学会通讯, 2020,16(11):23-28. CUI P, DENG K, WANG G Y, et al. The possible roadmaps to safe and trustworthy AI[J]. Communications of the CCF, 2020,16(11):23-28(in Chinese). [65] EASA.Artificial intelligence roadmap——a human-centric approach to AI in aviation[R]. Cologne:European Union Aviation Safety Agency,2020. [66] NIKOS V.Ethics guidelines for trustworthy AI[R]. European Commission High-level Expert Group on Artificial Intelligence,2019. [67] EASA.Concepts of design assurance for neural networks(CoDANN)[R]. Cologne:European Union Aviation Safety Agency,2020. |