ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2021, Vol. 42 ›› Issue (4): 525044-525044.doi: 10.7527/S1000-6893.2020.25044
• Review • Previous Articles Next Articles
YUAN Li1,2, WANG Shuyi1,2
Received:
2020-12-01
Revised:
2020-12-21
Published:
2021-01-26
Supported by:
CLC Number:
YUAN Li, WANG Shuyi. A review on development of intelligent health management technology for spacecraft control systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 525044-525044.
[1] 郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1):1-3. ZHENG N N. The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1):1-3(in Chinese). [2] 包为民, 祁振强, 张玉. 智能控制技术发展的思考[J]. 中国科学:信息科学, 2020, 50(8):1267-1272. BAO W M, QI Z Q, ZHANG Y. Thoughts on the development of intelligent control technology[J]. SCIENTIA SINICA Informationis, 2020, 50(8):1267-1272(in Chinese). [3] 包为民. 航天智能控制技术让运载火箭"会学习"[J]. 航空学报, 2021,42(11):525055. BAO W M. Space Intelligent control technology enables launch vehicle to "Self-Learning"[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(11):525055(in Chinese). [4] 中华人民共和国国务院. 新一代人工智能发展规划.[EB/OL]. http://www.gov.cn/zhengce/content/2017-07/20/content5211996.htm. The State Council of the People's Republic of China. New Generation Artificial Intelligence Development Plan[EB/OL]. http://www.gov.cn/zhengce/content/2017-07/20/content5211996.htm. [5] 袁利, 黄煌. 空间飞行器智能自主控制技术现状与发展思考[J]. 空间控制技术与应用, 2019, 45(4):7-18. YUAN L, HUANG H. Current trends of spacecraft intelligent autonomous control[J]. Aerospace Control and Application2019, 45(4):7-18(in Chinese). [6] SCHWABACHER M, SAMUELS J, BROWNSTON L. The NASA integrated vehicle health management technology experiment for X-37[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4733:49-60. [7] 刘强, 周经伦, 金光, 等. 基于随机阈值的Gauss-Brown失效物理模型的动量轮可靠性评估[J]. 宇航学报, 2009, 30(5):2109-2115. LIU Q, ZHOU J L, JIN G, et al. The reliability estimation of the momentum wheel based on the stochastic threshold Gauss-Brown failure physics model[J]. Journal of Astronautics, 2009, 30(5):2109-2115(in Chinese). [8] MCMAHON P, LAVèN R. Results from 10 years of reaction/momentum wheel life testing[C]//11th European Space Mechanisms and Tribology Symposium, 2005. [9] 南熠. 基于有向图的航天器健康管理算法研究[D]. 哈尔滨:哈尔滨工业大学, 2014:53-70. NAN Y. Research on health management algorithm of spacecraft based on directed graph[D]. Harbin:Harbin Institute of Technology, 2014:53-70(in Chinese). [10] 吕琛. 故障诊断与预测技术——原理、技术及应用[M]. 北京:北京航空航天大学出版社, 2012:262-265. LV S. Fault diagnosis and prediction techniques-Principles, techniques and applications[M]. Beijing:Beihang University Press, 2012:262-265(in Chinese). [11] 郭小红, 徐小辉, 赵树强, 等. 基于新息灰预测的卫星遥测参数状态预测及应用[J]. 宇航学报, 2010, 31(8):1939-1943. GUO X H, XU X H, ZHAO S Q, et al. Satellite telemetry parameter trend forecast algorithm based on new information and applications[J]. Journal of Astronautics, 2010, 31(8):1939-1943(in Chinese). [12] CHONLAGRN I,ALI M,MOHAMMAD M. Computational algorithm for dynamic hybrid bayesian network in on-line system health management applications[C]//2014 International Conference on Prognostics and Health Management, 2014. [13] COLANTONIO S,DI B M, PIERI G,et al. System health state monitoring using multilevel artificial neural networks[C]//2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications. Piscataway:IEEE Press, 2005:50-55. [14] SURESH K,SRINIVASAN R,AMARESH N,et al. Modeling of various phases of micro satellite using timed petri nets[C]//2007 International Conference on Signal Processing, Communications and Networking, 2007:195-198. [15] 朱丽莎, 姜斌, 程月华, 等. 一种卫星遥测参数动态ARMA建模方法[J]. 航天控制, 2017, 35(2):37-43. ZHU L S, JIANG B, CHENG Y H, et al. A dynamic ARMA modeling method for satellite telemetry data[J]. Aerospace Control, 2017, 35(2):37-43(in Chinese). [16] LOSIK L. Stopping launch pad delays, launch failure, satellite infant mortalities and on-orbit satellite failure using telemetry prognostic technology[C]//Proceedings of the International Telemetry Conference, 2007. [17] 彭宇, 刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3):481-495. PENG Y, LIU D T. Data-driven prognostics and health management:A review of recent advances[J]. Chinese Journal of Scientific Instrument, 2014, 35(3):481-495(in Chinese). [18] DAI C L, PI D C, FANG Z, et al. A novel long-term prediction model for hemispherical resonator gyroscope's drift data[J]. IEEE Sensors Journal, 2014, 14(6):1886-1897. [19] GAO Y, YANG T, LI W, et al. State trend prediction of spacecraft using PSO-SVR[J]. Lecture Notes in Electrical Engineering, 2014, 323:337-345. [20] LIU M, LU N, CHENG Y, et al. Data-based incipient fault detection and prediction for satellite's attitude control system[C]//IEEE Control and Decision Conference. Piscataway:IEEE Press, 2017:1202-1207. [21] LEN L. Results from the prognostic analysis completed on the NASA extreme ultra violet explore satellite[C]//2012 IEEE Aerospace Conference. Piscataway:IEEE Press, 2012:1-16. [22] JOSE-ANTONIO M, ALESSANDRO D, BRUNO S, et al. DrMUST-a data mining approach for anomaly investigation[C]//Proceedings of the SpaceOps 2012 Conference. Piscataway:IEEE Press, 2012:11-15. [23] ELSAID A E, WILD B, HIGGINS J, et al. Using LSTM recurrent neural networks to predict excess vibration events in aircraft engines[C]//2016 IEEE 12th International Conference on e-Science (e-Science). Piscataway:IEEE Press, 2016. [24] SARY C, PETERSON C, ROWE J, et al. Trend analysis for spacecraft systems using multimodal reasoning:Technical Report SS-98-04[R]. Greenbelt:AAAI, 1998:157-162. [25] WINTOFT P, LUNDSTEDT H, ELIASSON L, et al. Spacecraft anomaly analysis and prediction system-SAAPS[C]//Proceedings of the 7th International Conference, 2001:169-176. [26] KIRSCH M G F, AIREY S, CHAPMAN P, et al. Bearing noise detection, modeling and mitigation measures on ESA's X-ray observatory XMM-NEWTON[C]//2014 GN&C Conference, 2014:827-838. [27] TAKAKI R, HASHIMOTO M, HONDA H, et al. ISACS-DOC automatic monitoring and diagnostic system for spacecraft[C]//The 6th International Symposium on Reducing the Costs of Spacecraft Ground Systems & Operations, 2005. [28] HUNDMAN K,CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//The 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2018. [29] DALY K C,GAI E,HARRISON J V.Generalized likelihood test for FDI in redundant sensor configurations[J]. Journal of Guidance and Control, 1979, 2(1):9-17. [30] 邢琰, 吴宏鑫, 王晓磊, 等. 航天器故障诊断与容错控制技术综述[J] 宇航学报, 2003, 24(3):221-226. XING Y, WU H X, WANG X L, et al. Survey of fault diagnosis and fault-tolerant control technology for spacecraft[J]. Journal of Astronautics, 2003, 24(3):221-226(in Chinese). [31] ZOLGHADRI A. Advanced model-based FDIR techniques for aerospace systems:Today challenges and opportunities[J]. Progress in Aerospace Sciences, 2012, 53:18-29. [32] YIN S, XIAO B, DING S X, et al. A review on recent development of spacecraft attitude fault tolerant control system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3311-3320. [33] 王大轶, 屠园园, 符方舟, 等. 航天器控制系统的自主诊断重构技术[J]. 控制理论与应用, 2019, 36(12):1966-1978. WANG D Y, TU Y Y, FU F Z, et al. Autonomous diagnosis and reconfiguration technology of spacecraft control system[J]. Control Theory & Applications, 2019, 36(12):1966-1978(in Chinese). [34] WILLIAMSON W R, SPEYER J L, DANG V T, et al. Fault detection and isolation for deep space satellites[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5):1570-1584. [35] 沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报, 2020, 41(6):647-656. SHEN Y, LI L L, WANG Z H. A review of fault diagnosis and fault-tolerant control techniques for spacecraft[J]. Journal of Astronautics, 2020, 41(6):647-656(in Chinese). [36] PATTON R J, FRANK P M, CLARK R N. Issues of fault diagnosis for dynamic systems[M]. London:Springer-Verlag, 2000:1-12. [37] FRANK P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy a survey and some new results[J]. Automatica, 1990, 26(3):459-474. [38] FRANK P M. Analytical and qualitative model-based fault diagnosis a survey and some new results[J]. European Journal of Control, 1996, 2(1):6-28. [39] MARZAT J, PIET-LAHANIER H, DAMONGEOT F, et al. Model-based fault diagnosis for aerospace systems:a survey[J]. Journal of Aerospace Engineering, 2012, 226(10):1329-1360. [40] 邢琰, 魏春岭. 基于四元数估计角速率的陀螺故障定位[J]. 宇航学报, 2003, 24(4):410-413. XING Y, WEI C L. Fault location of single redundant gyroscopes based on estimated angular rate using quaternion[J]. Journal of Astronautics, 2003, 24(4):410-413(in Chinese). [41] 邢琰, 吴宏鑫. 一种红外地球敏感器和陀螺的故障隔离方法[J]. 计算技术与自动化, 2003, 22(2):74-76. XING Y, WU H X. A fault isolation method for infrared Earth sensors and gyroscopes[J]. Computing Technology and Automation, 2003, 22(2):74-76(in Chinese). [42] BOSKOVIC J D, BERGSTROM S E, MEHRA R K. Robust integrated flight control design under failures, damage, and state-dependent disturbances[J]. Journal of Guidance, Control, and Dynamics, 2005, 28:902-917. [43] CHEN W, SAIF M. Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults[J]. Journal of Dynamic Systems Measurement and Control, 2007, 129(3):352-356. [44] XIONG K, CHAN C W, ZHANG H Y. Detection of satellite attitude sensor faults using the UKF[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2):480-491. [45] TUDOROIU N, KHORASANI K. Satellite fault diagnosis using a bank of interacting Kalman filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4):1334-1350. [46] HENRY D. Fault diagnosis of microscope satellite thrusters using H-infinity/H-filters[J]. Journal of Guidance, Control, and Dynamics, 2008, 31:699-711. [47] PIRMORADI F N, SASSANI F, SILVA C W D. Fault detection and diagnosis in a spacecraft attitude determination system[J]. Acta Astronautica, 2009, 65(5-6):710-729. [48] GAO Z F,JIANG B, SHI P, et al. Sensor fault estimation and compensation for microsatellite attitude control systems[J]. International Journal of Control Automation and Systems, 2010, 8(2):228-237. [49] ALWI H, EDWARDS C, MARCOS A. FDI for a Mars orbiting satellite based on a sliding mode observer scheme[C]//IEEE 2010 Conference on Control and Fault Tolerant Systems. Piscataway:IEEE Press, 2010:125-130. [50] GAO C, ZHAO Q, DUAN G R. Robust actuator fault diagnosis scheme for satellite attitude control systems[J]. Journal of the Franklin Institute, 2013, 350(9):2560-2580. [51] ZHANG J, SWAIN A K, NGUANG S K. Robust sensor fault estimation scheme for satellite attitude control systems[J]. Journal of the Franklin Institute, 2013, 350(9):2581-2604. [52] 李文博, 王大轶, 刘成瑞. 动态系统实际故障可诊断性的量化评价研究[J]. 自动化学报, 2015, 41(3):497-507. LI W B, WANG D Y, LIU C R. Quantitative evaluation of actual fault diagnosability for dynamic systems[J]. Acta Automatica Sinica, 2015, 41(3):497-507(in Chinese). [53] 汤文涛, 王振华, 王烨, 等. 基于未知输入集员滤波器的不确定系统故障诊断[J]. 自动化学报, 2018, 44(9):1717-1724. TANG W T, WANG Z H, WANG Y, et al. Fault diagnosis for uncertain systems based on unknown input set-membership filters[J]. Acta Automatica Sinica, 2018, 44(9):1717-1724(in Chinese). [54] ZHONG M Y, LIU C R, ZHOU D H, et al. Probability analysis of fault diagnosis performance for satellite attitude control systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15(11):5867-5876. [55] 李利亮,牛睿,邵志杰,等. 基于专用卡尔曼滤波器思想的陀螺故障诊断[J]. 控制理论与应用, 2019, 36(9):1501-1508. LI L L, NIU R, SHAO Z J, et al. Gyroscope fault diagnosis based on dedicated Kalman filter scheme[J]. Control Theory & Applications, 2019, 36(9):1501-1508(in Chinese). [56] WANG D Y, FU F Z, LI W B, et al. A review of the diagnosability of control systems with applications to spacecraft[J]. Annual Reviews in Control, 2020, 49:212-229. [57] RAHIMI A, KUMAR K D, ALIGHANBARI H. Fault isolation of reaction wheels for satellite attitude control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1):610-629. [58] 郝慧, 王南华. 基于小波分析的航天器姿态控制系统故障诊断方法研究[J]. 航天控制, 2005, 23(5):73-78. HAO H, WANG N H. Research on wavelet analysis based fault diagnosis for attitude control subsystem of spacecraft[J]. Aerospace Control, 2005, 23(5):73-78(in Chinese). [59] WU Q, SAIF M. Robust fault detection and diagnosis for a multiple satellite formation flying system using second order sliding mode and wavelet networks[C]//2007 American Control Conference, 2007:426-431. [60] 王振华, 沈毅, 张筱磊. 基于等价关系和经验模态分解的卫星陀螺故障诊断方法[J]. 南京理工大学学报, 2011, 35(S2):127-131. WANG Z H, SHEN Y, ZHANG X L. Satellite gyro-scope fault diagnosis based on parity relation and empirical mode decomposition[J]. Journal of Nanjing University of Science and Technology, 2011, 35(S2):127-131(in Chinese). [61] ALI A, SCHARNHORST D A, AI C S, et al. A flight expert system (FLES) for on-board fault monitoring and diagnosis[C]//Proceeding of SPIE, 1986:58-61. [62] 王南华, 倪行震, 李丹, 等. 卫星控制系统地面实时故障诊断专家系统SCRDES[J]. 航天控制, 1991, 9(3):37-44. WANG N H, NI X Z, LI D, et al. An on-ground real-time fault diagnosis expert system for the satellite attitude control system (SCRDES)[J]. Aerospace Control, 1991, 9(3):37-44(in Chinese). [63] 谢敏, 楼鑫, 罗芊. 航天器故障诊断技术综述及发展趋势[J]. 软件, 2016, 37(7):70-74. XIE M, LOU X, LUO Q. Reviewed and developing trend of spacecraft fault diagnosis technology[J]. Computer Engineering & Software, 2016, 37(7):70-74(in Chinese). [64] 苏林, 尚朝轩, 刘文静. 航天器姿态控制系统故障诊断方法概述[J]. 长春理工大学学报(自然科学版), 2010, 33(4):23-27. SU L, SHANG C X, LIU W J. Survey on the technology of fault diagnosis for spacecraft attitude control system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2010, 33(4):23-27(in Chinese). [65] WU Q, SAIF M. Robust fault diagnosis for a satellite large angle attitude system using an iterative neuron PID (INPID) observer[C]//2006 American Control Conference, 2006:5710-5715. [66] TALEBI H A, KHORASANI K, TAFAZOLI S. A recur-rent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem[J]. IEEE Transactions on Neural Networks, 2009, 20(1):45-60. [67] HUANG Y, LI S, SUN J. Mars entry fault-tolerant control via neural network and structure adaptive model inversion[J]. Advances in Space Research, 2019, 63(1):557-571. [68] LI Z Q, MA L, KHORASANI K. A dynamic neural network-based reaction wheel fault diagnosis for satellites[C]//International Joint Conference on Neural Networks, 2006:3714-3721. [69] GAO S, ZHANG W, HE X, et al. Neural network-based fault diagnosis scheme for satellite attitude control system[C]//2018 Chinese Control And Decision Conference (CCDC), 2018:3990-3995. [70] CHENG Y, WANG R X, XU M Q. A combined model-based and intelligent method for small fault detection and isolation of actuators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2403-2413. [71] SANDRA C H,ADAM J S. Livingstone model-based diagnosis of earth observing One[C]//AIAA 1 st Intelligent Systems Technical Conference. Reston:AIAA, 2004:1-11. [72] 高伟, 邢琰, 王南华. 基于定性模型的故障诊断方法[J]. 空间控制技术与应用, 2009, 35(1):25-29. GAO W, XING Y, WANG N H. Fault diagnosis approach based on qualitative model[J]. Aerospace Control and Application, 2009, 35(1):25-29(in Chinese). [73] 晏政. 航天器推进系统基于定性模型的故障诊断方法研究[D]. 长沙:国防科学技术大学, 2013:7-24. YAN Z. Investigation on model-based fault diagnosis methods for spacecraft propulsion system[D]. Changsha:National University of Defense Technology, 2013:7-24(in Chinese). [74] LI Z, LIU G, ZHANG R, et al. Fault detection, identification and reconstruction for gyroscope in satellite based on independent component analysis[J]. Acta Astronautica, 2011, 68(7-8):1015-1023. [75] HU D, SAROSH A, DONG Y F. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels[J]. ISA Transactions, 2012, 51:309-316. [76] 黄旭星, 李爽, 孙盼, 等. 人工智能在航天器制导与控制中的应用综述[J]. 航空学报, 2021, 42(4):524201. HUANG X X, LI S, SUN P, et al. Review of spacecraft guidance and control based on artificial intelligence[J/OL]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524201(in Chinese). [77] 姜洪开, 邵海东, 李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7):27-34. JIANG H K, SHAO H D, LI X Q. Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering, 2019, 55(7):27-34(in Chinese). [78] ORTIZ N, HERNáNDEZ R D, JIMENEZ R, et al, Survey of biometric pattern recognition via machine learning techniques[J]. Contemporary Engineering Sciences, 2018, 11(34):1677-1694. [79] TOMS D,HADDEN G D, HARRINGTON J. Attitude determination and control system(ADCS) and maintenance and diagnostic system(MDS):A maintenance and diagnostic system for Space Station Freedom[C]//The 5th Conference on Artificial Intelligence for Space Applications, 1990:175-184. [80] MENDONA L F, SOUSA J M C, COSTA K M G S D. An architecture for fault detection and isolation based on fuzzy methods[J]. Expert Systems with Applications, 2009, 36(2):1092-1104. [81] SMART FDIR Project Team. SMART FDIR final report:SD-RP-AI-0378[R]. Turin:ALENIA SPAZIO S.p.A., 2003. [82] 姜连祥, 李华旺, 杨根庆, 等. 航天器自主故障诊断技术研究进展[J]. 宇航学报, 2009, 30(4):1320-1326. JIANG L X, LI H W, YANG G Q, et al. A survey of spacecraft autonomous fault diagnosis research[J]. Journal of Astronautics, 2009, 30(4):1320-1326(in Chinese). [83] 唐圣金, 郭晓松, 司小胜, 等. 基于维纳过程的卫星用光纤陀螺剩余寿命预测[J]. 红外与激光工程, 2013, 42(12):3347-3352. TANG S J, GUO X S, SI X S, et al. Remaining useful life prediction of FOGs used for satellite based on Wiener process[J]. Infrared and Laser Engineering, 2013, 42(12):3347-3352(in Chinese). [84] LI H, PAN D, CHEN C L P. Reliability modeling and life estimation using an expectation maximization based wiener degradation model for momentum wheels[J]. IEEE Transactions on Cybernetics, 2015, 45(5):969-977. [85] ZHU L S, JIANG B, CHENG Y H. Life prediction methods based on data-driven:Review and trend[C]//Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, Piscataway:IEEE Press, 2016:1682-1686. [86] 郝旭东. 基于RVM-PF的卫星关键部件寿命预测[D]. 长沙:国防科学技术大学, 2011:5-7. HAO X D. Life prediction of satellite key components based on RVM-PF[D]. Changsha:National University of Defense Technology, 2011:5-7(in Chinese). [87] 张建勋, 胡昌华, 周志杰, 等. 多退化变量下基于Copula函数的陀螺仪剩余寿命预测方法[J]. 航空学报, 2014, 35(4):1111-1121. ZHANG J X, HU C H, ZHOU Z J, et al. Multiple degradation variables modeling for remaining useful life estimation of gyros based on copula function[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):1111-1121(in Chinese). [88] 刘胜南, 陆宁云, 程月华, 等. 基于多退化量的动量轮剩余寿命预测方法[J]. 南京航空航天大学学报, 2015, 47(3):360-366. LIU S N, LU N Y, CHENG Y H, et al. Remaining life-time prediction for momentum wheel based on multiple degradation parameters[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(3):360-366(in Chinese). [89] 丁瑞, 陆宁云, 程月华, 等. 基于D-S证据理论的航天设备寿命预测方法[J]. 中国空间科学技术, 2016, 36(4):58-66. DING R, LU N Y, CHENG Y H, et al. Lifetime prediction of aerospace equipment based on D-S evidence theory[J]. Chinese Space Science and Technology, 2016, 36(4):58-66(in Chinese). [90] HU C, YOUN B D, WANG P, et al. Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[J]. Reliability Engineering & System Safety, 2012, 103:120-135. [91] LIU Z, LI Q, MU C. A hybrid LSSVR-HMM based prognostics approach[C]//The 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012:275-278. [92] QI H M, CHENG Y H, JIANG B, et al. The residual life prediction of the satellite attitude control system based on Petri net[C]//2014 Prognostics and System Health Management Conference, 2014:266-270. [93] 田静. 基于动态故障树的卫星姿态控制系统寿命预测方法研究[D]. 南京:南京航空航天大学, 2016:67-82. TIAN J. Research on prediction of residual use life for attitude control system of satellite based on dynamic fault tree[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:67-82(in Chinese). [94] 祁海铭, 程月华, 姜斌, 等. 基于多状态故障的卫星姿态控制系统剩余寿命预测方法[J]. 南京航空航天大学学报, 2015, 47(1):29-36. QI H M, CHENG Y H, JIANG B, et al. Residual life prediction of satellite attitude control system based on multistate failures[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(1):29-36(in Chinese). [95] CASTET J F, SALEH J H. Single versus mixture Weibull distributions for nonparametric satellite reliability[J]. Reliability Engineering & System Safety, 2010, 95(3):295-300. [96] CASTANEDA G A P, AUBRY J F, BRINZEI N. Stochastic hybrid automata model for dynamic reliability assessment[J]. Journal of Risk and Reliability, 2011, 225(1):28-41. [97] FISCHER P M, LUDTKE D, LANGE C, et al. Implementing model-based system engineering for the whole lifecycle of a spacecraft[J]. CEAS Space Journal, 2017, 9(3):351-365. [98] LIU X, GUO J, GILL E. Towards model-driven development of AOCS/GNC for small satellite missions[C]//The 65th International Astronautical Congress (IAC), 2014. [99] TAO F, SUI F, LIU A, et al. Digital twin-driven prod-uct design framework[J]. International Journal of Production Research, 2019, 57(12):3935-3953. [100] TUEGEL E J. The airframe digital twin:some challenges to realization[C]//Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2012. [101] CAI Y, STARLY B, COHEN P, et a1.Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing[C]//Proceedings of the 45th SME North American Manufacturing Research Conference, 2017:1031-1042. [102] 刘蔚然, 陶飞, 程江峰, 等. 数字孪生卫星:概念、关键技术及应用[J]. 计算机集成制造系统, 2020, 26(3):565-588. LIU W R, TAO F, CHENG J F, et al. Digital twin satellite:concept, key technologies and applications[J]. Computer Integrated Manufacturing Systems, 2020, 26(3):565-588(in Chinese). |
[1] | Shengzhe SHAN, Weiwei ZHANG. Air combat intelligent decision-making method based on self-play and deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328723-328723. |
[2] | Minghui HU, Jinji GAO, Zhinong JIANG, Weimin WANG, Limin ZOU, Tao ZHOU, Yunfeng FAN, Yue WANG, Jiaxin FENG, Chenyang LI. Research progress on vibration monitoring and fault diagnosis for aero-engine [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 630194-630194. |
[3] | Zhanjun HUANG, Xin DONG, Muyu LU, Ruitao ZHANG, Zhaoyang YAN, An ZHANG. Fault diagnosis of inverter of aviation HVDC sysytem based on DRSN and voltage amplitude analysis [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 328685-328685. |
[4] | Tianqing LI, Weimin WANG, Xulong ZHANG, Shuhui WANG, Zhenyu FU. Identification method of rotor blade axial displacement based on blade tip timing [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 228682-228682. |
[5] | Jie LI, Wenxin HUANG, Yiming CAI, Siyuan WANG, Yufei GAO, Xuefeng JIANG. Fault diagnosis and fault tolerant control of position sensor based on DFPMM [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329307-329307. |
[6] | Baohui JIA, Fan JIANG, Yuxin WANG, Du WANG. Fault diagnosis method based on civil aircraft maintenance text data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326598-326598. |
[7] | Jinrui WANG, Shanshan JI, Zongzhen ZHANG, Zhenyun CHU, Baokun HAN, Huaiqian BAO. Parallel sparse filtering for fault diagnosis under bearing acoustic signal [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426887-426887. |
[8] | Weimin BAO. A review of reusable launch vehicle technology development [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629555-629555. |
[9] | Linkun HE, Wenchao XUE, Ran ZHANG, Huifeng LI. Guidance and control for powered descent and landing of launch vehicles: Overview and outlook [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628462-628462. |
[10] | Zehao CHEN, Hui CHEN, Yushan GAO, Hang ZHANG. Review and prospect of model-based fault diagnosis technology for liquid rocket engines [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629016-629016. |
[11] | Gongye YU, Weidong CAI, Minghui HU, Wencai LIU, Bo MA. Intelligent migration diagnosis of mechanical faults driven by hybrid fault mechanism and domain adaptation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 426800-426800. |
[12] | Yuwei LIU, Yuqiang CHENG, Jianjun WU. Research progress of intelligent control methods in space propulsion systems [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528505-528505. |
[13] | Chenghao GUO, Jinsong YU, Yue SONG, Qi YIN, Jiaxuan LI. Application of digital twin⁃based aircraft landing gear health management technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 227629-227629. |
[14] | Fangli WANG, Kai LIU, Wei PAN, Mingbo TONG. Application and development of green structure maintenance for civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 25851-025851. |
[15] | Wanli ZHAO, Yingqing GUO, Kejie XU, Cansen WANG, Haojie YING, Xinxin TAO. Review of key technologies for fault diagnosis and accommodation for multi⁃electric distributed engine control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27519-027519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341