ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2020, Vol. 41 ›› Issue (1): 23280-023280.doi: 10.7527/S1000-6893.2019.23280
• Review • Previous Articles Next Articles
YANG Chuang1, LIU Jianye1,2,3, XIONG Zhi1,2,3, LAI Jizhou1,2,3, XIONG Jun1
Received:
2019-07-09
Revised:
2019-08-03
Online:
2020-01-15
Published:
2019-09-27
Supported by:
CLC Number:
YANG Chuang, LIU Jianye, XIONG Zhi, LAI Jizhou, XIONG Jun. Brain-inspired navigation technology integrating perception and action decision: A review and outlook[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 23280-023280.
[1] | HONKANEN A, ADDEN A, DA SILVA FREITAS J, et al. The insect central complex and the neural basis of navigational strategies[J]. Journal of Experimental Biology, 2019, 222(S1):1-15. |
[2] | OMER D B, MAIMON S R, LAS L, et al. Social place-cells in the bat hippocampus[J]. Science, 2018, 359(6372):218-224. |
[3] | MAYA G S, LIORA L, YOSSI Y, et al. Spatial cognition in bats and rats:From sensory acquisition to multiscale maps and navigation[J]. Nature Reviews Neuroscience, 2015, 16(2):94-108. |
[4] | CHUNG S-J, PARANJAPE A A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018, 34(4):837-855. |
[5] | 熊骏, 熊智, 刘建业, 等. 一种基于置信传播和协同信息筛选的无人机编队协同导航方法[C]//2018年无人载体导航与控制技术发展及应用学术研讨峰会. 北京:中国惯性技术学会, 2018:42-46. XIONG J, XIONG Z, LIU J Y, et al. Cooperative navigation method based on belief propagation and cooperative message screening[C]//Proceedings of the Development and Application of Unmanned Vehicle Navigation and Control Technology. Beijing:Chinese Society of Inertial Technology, 2018:42-46(in Chinese). |
[6] | 许建新, 熊智, 陈明星, 等. 多无人机辅助定位信标的区域导航定位算法[J]. 航空学报, 2018, 39(10):322172. XU J X, XIONG Z, CHEN M X, et al. Regional navigation algorithm assisted by locations of multi uavs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):322172(in Chinese). |
[7] | 许晓伟, 赖际舟, 吕品, 等. 多无人机协同导航技术研究现状及进展[J]. 导航定位与授时, 2017, 4(4):1-9. XU X W, LAI J Z, LV P, et al. a literature review on the research progress of the cooperative navigation technology for multiple UAVs[J]. Navigation Positioning & Timing, 2017, 4(4):1-9(in Chinese). |
[8] | 孙瑶洁, 熊智, 李文龙, 等. 无人机集群类脑导航系统综述[J]. 航空计算技术, 2019, 49(3):130-134. SUN Y J, XIONG Z, LI W L, et al. Research status and progress of brain-like formation navigation system[J]. Aeronautical Computing Technique, 2019, 49(3):130-134(in Chinese). |
[9] | CHIALVO D R, MILLONAS M M. The biology and technology of intelligent autonomous agents[M]. Heidelberg:Springer, 1995:439-450. |
[10] | BUSH D, BARRY C, MANSON D, et al. Using grid cells for navigation[J]. Neuron, 2015, 87(3):507-520. |
[11] | YUAN M, TIAN B, SHIM V A, et al. An entorhinal-hippocampal model for simultaneous cognitive map building[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015. |
[12] | EDVARDSEN V. Navigating by decoding grid cells[D]. Norway:Norwegian University of Science and Technology, 2019:155-201. |
[13] | 刘建业, 杨闯, 熊智, 等. 无人机类脑吸引子神经网络导航技术[J]. 导航定位与授时, 2019, 6(5):52-60. LIU J Y, YANG C, XIONG Z, et al. Attractor neural network-based brain-inspired navigation technology for UAV[J]. Navigation Positioning & Timing, 2019, 6(5):52-60(in Chinese). |
[14] | HYMAN J M, ZILLI E A, PALEY A M, et al. Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates[J]. Frontiers in Integrative Neuroscience, 2010, 4(2):1-13. |
[15] | STEFFEN L, REICHARD D, WEINLAND J, et al. Neuromorphic stereo vision:A survey of bio-inspired sensors and algorithms[J]. Frontiers in Neurorobotics, 2019, 13(28):1-20. |
[16] | TIAN S, EBERT F, JAYARAMAN D, et al. Manipulation by feel:Touch-based control with deep predictive models[EB/OL]. (2019-03-11)[2019-07-09]. https://arxiv.org/abs/1903.04128. |
[17] | HATWELL Y, STRERI A, GENTAZ E. Touching for knowing:Cognitive psychology of haptic manual perception[M]. Benjamins:John Benjamins Publishing, 2003:1-20. |
[18] | FEI F, TU Z, ZHANG J, et al. Learning extreme hummingbird maneuvers on flapping wing robots[EB/OL]. (2019-02-25)[2019-07-09].https://arxiv.org/abs/1902.09626. |
[19] | WU W C, SCHENATO L, WOOD R J, et al. Biomimetic sensor suite for flight control of a micromechanical flying insect:Design and experimental results[C]//IEEE International Conference on Robotics & Automation. Piscataway, NJ:IEEE Press, 2003. |
[20] | SRINIVASAN M V. An image-interpolation technique for the computation of optic flow and egomotion[J]. Biological Cybernetics, 1994, 71(5):401-415. |
[21] | VARGA M, ZUFFEREY J C, HEITZ G H M, et al. Evaluation of control strategies for fixed-wing drones following slow-moving ground agents[J]. Robotics & Autonomous Systems, 2015, 72:285-294. |
[22] | BASIRI M, SCHILL F S, FLOREANO D, et al. Audio-based localization for swarms of micro air vehicles[C]//IEEE International Conference on Robotics & Automation. Piscataway, NJ:IEEE Press, 2014:4279-4734. |
[23] | BAO X, GJORGIEVA E, SHANAHAN L K, et al. Grid-like neural representations support olfactory navigation of a two-dimensional odor space[J]. Neuron, 2019, 102(3):1-10. |
[24] | BADDELEY B, GRAHAM P, PHILIPPIDES A, et al. Holistic visual encoding of ant-like routes:Navigation without waypoints[J]. Adaptive Behavior, 2011, 19(1):3-15. |
[25] | CARTWRIGHT B A, COLLETT T S. Landmark maps for honeybees[J]. Biological Cybernetics, 1987, 57(1-2):85-93. |
[26] | MOORE T, ZIRNSAK M. Neural mechanisms of selective visual attention[J]. Annual Review of Neuroscience, 2017, 18(1):193-222. |
[27] | HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of physiology, 1962, 160(1):106-154. |
[28] | MANCINI M, COSTANTE G, VALIGI P, et al. Towards domain independence for learning-based monocular depth estimation[J]. IEEE Robotics & Automation Letters, 2017, 2(3):1-8. |
[29] | ROSENBAUM D, BESSE F, VIOLA F, et al. Learning models for visual 3D localization with implicit mapping[EB/OL]. (2018-12-12)[2019-07-09]. https://arxiv.org/abs/1807.03149. |
[30] | KAUFMANN E, LOQUERCIO A, RANFTL R, et al. Deep drone racing:Learning agile flight in dynamic environments[EB/OL]. (2018-10-09)[2019-07-09]. https://arxiv.org/abs/1806.08548. |
[31] | PALMER S E. Modern theories of gestalt perception[J]. Mind & Language, 2010, 5(4):289-323. |
[32] | MCNAUGHTON B L, BATTAGLIA F P, OLE J, et al. Path integration and the neural basis of the cognitive map[J]. Nature Reviews Neuroscience, 2006, 7(8):663-678. |
[33] | TAMAS M, STAN F, KE C, et al. Bayesian integration of information in hippocampal place cells[J]. Plos One, 2015, 10(8):e0136128. |
[34] | BURAK Y, FIETE I R. Accurate path integration in continuous attractor network models of grid cells[J]. PLoS Computational Biology, 2009, 5(2):1-16. |
[35] | BALL D, HEATH S, WILES J, et al. OpenRatSLAM:An open source brain-based SLAM system[J]. Autonomous Robots, 2013, 34(3):149-176. |
[36] | KANITSCHEIDER I, FIETE I. Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems[C]//Proceedings of the Advances in Neural Information Processing Systems, 2017:4529-4538. |
[37] | CUEVA C J, WEI X X. Emergence of grid-like representations by training recurrent neural networks to perform spatial localization[EB/OL]. (2018-03-21)[2019-07-09]. https://arxiv.org/abs/1803.07770. |
[38] | BANINO A, BARRY C, URIA B, et al. Vector-based navigation using grid-like representations in artificial agents[J]. Nature, 2018, 557(7705):429. |
[39] | HWU T, KRICHMAR J, ZOU X. A complete neuromorphic solution to outdoor navigation and path planning[C]//2017 IEEE International Symposium on Circuits and Systems. Piscataway, NJ:IEEE Press, 2017:1-4. |
[40] | TANG G, MICHMIZOS K P. Gridbot:An autonomous robot controlled by a spiking neural network mimicking the brain's navigational system[C]//International Conference on Neuromorphic Systems, 2018:4-11. |
[41] | BURGESS N, JACKSON A, HARTLEY T, et al. Predictions derived from modelling the hippocampal role in navigation[J]. Biological Cybernetics, 2000, 83(3):301-312. |
[42] | EDVARDSEN V. Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network[J]. Natural Computing, 2016, 18(1):13-27. |
[43] | GOLDSCHMIDT D, MANOONPONG P, DASGUPTA S. A neurocomputational model of goal-directed navigation in insect-inspired artificial agents[J]. Frontiers in Neurorobotics, 2017, 11(20):1-17. |
[44] | LAMPLE G, CHAPLOT D S. Playing FPS games with deep reinforcement learning[EB/OL]. (2018-01-29)[2019-07-09]. https://arxiv.org/abs/1609.05521v2. |
[45] | MIROWSKI P, PASCANU R, VIOLA F, et al. Learning to navigate in complex environments[EB/OL]. (2017-01-13)[2019-07-09]. https://arxiv.org/abs/1611.03673v3. |
[46] | ZHU Y, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2017:3357-3364. |
[47] | SAVINOV N, RAICHUK A, MARINIER R, et al. Episodic curiosity through reachability[EB/OL]. (2019-05-09)[2019-07-09]. https://arxiv.org/abs/1810.02274v5. |
[48] | FINN C, RAJESWARAN A, KAKADE S, et al. Online meta-learning[EB/OL]. (2019-07-03)[2019-07-09]. https://arxiv.org/abs/1902.08438v4. |
[49] | LOQUERCIO A, MAQUEDA A I, BLANCO C R D, et al. Dronet:Learning to fly by driving[J]. IEEE Robotics & Automation Letters, 2018, 3(2):1088-1095. |
[50] | TOBIN J, FONG R, RAY A, et al. Domain randomization for transferring deep neural networks from simulation to the real world[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE Press, 2017. |
[51] | MIROWSKI P, GRIMES M K, MALINOWSKI M, et al. Learning to Navigate in Cities Without a Map[EB/OL]. (2019-01-10)[2019-07-09]. https://arxiv.org/abs/1804.00168v3. |
[52] | MADL T, FRANKLIN S, CHEN K, et al. A computational cognitive framework of spatial memory in brains and robots[J]. Cognitive Systems Research, 2018, 47:147-172. |
[53] | ARONOV D, NEVERS R, TANK D W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit[J]. Nature, 2017, 543(7647):719. |
[54] | QUIROGA R Q. Concept cells:The building blocks of declarative memory functions[J]. Nature Reviews Neuroscience, 2012, 13(8):587-597. |
[55] | BICANSKI A, BURGESS N. A computational model of visual recognition memory via grid cells[J]. Current Biology, 2019, 29(3):979-990. |
[56] | TANG H, YAN R, TAN K C. Cognitive navigation by neuro-inspired localization, mapping, and episodic memory[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10(3):751-761. |
[57] | FLEISCHER J G, EDELMAN G M. Brain-based devices[J]. IEEE Robotics & Automation Magazine, 2009, 16(3):33-41. |
[58] | SABO C, CHISHOLM R, PETTERSON A, et al. A lightweight, inexpensive robotic system for insect vision[J]. Arthropod Structure & Development, 2017, 46(5):689-702. |
[59] | HWU T, ISBELL J, OROS N, et al. A self-driving robot using deep convolutional neural networks on neuromorphic hardware[C]//2017 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE Press, 2017:635-641. |
[60] | KREISER R, PIENROJ P, RENNER A, et al. Pose estimation and map formation with spiking neural networks:towards neuromorphic SLAM[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2018:2159-2166. |
[61] | PALOSSI D, CONTI F, BENINI L. An open source and open hardware deep learning-powered visual navigation engine for autonomous nano-UAVs[EB/OL]. (2019-05-10)[2019-07-09]. https://arxiv.org/abs/1905.04166. |
[62] | PEI J, DENG L, SONG S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature, 2019, 572(7767):106. |
[63] | JIMENEZ R C, SOUSA R D, JOHNSON J H, et al. A model for foraging ants, controlled by spiking neural networks and double pheromones[EB/OL]. (2015-09-18)[2019-07-09]. https://arxiv.org/abs/1507.08467v3. |
[64] | BONNET F, MILLS R, SZOPEK M, et al. Robots mediating interactions between animals for interspecies collective behaviors[J]. Science, 2019, 4(28):eaau7897. |
[65] | DUVELLE É, JEFFERY K J. Social spaces:Place cells represent the locations of others[J]. Current Biology, 2018, 28(6):271-273. |
[66] | GEVA-SAGIV M, ROMANI S, LAS L, et al. Hippocampal global remapping for different sensory modalities in flying bats[J]. Nature Neuroscience, 2016, 19(7):952. |
[67] | WOHLGEMUTH M W, CHAO I, MOSS C F. 3D Hippocampal place field dynamics in free-flying echolocating bats[J]. Frontiers in Cellular Neuroscience, 2018, 12(270):1-16. |
[68] | NGUYEN T T, NGUYEN N D, NAHAVANDI S. Deep reinforcement learning for multi-agent systems:A review of challenges, solutions and applications[EB/OL]. (2019-02-06)[2019-07-09]. https://arxiv.org/abs/1812.11794v2. |
[69] | VLADIMIR G I, DARRYN J R. Cognitive supervisor for an autonomous swarm of robots[J]. Intelligent Control and Automation, 2017, 8(01):44-65. |
[70] | 熊智, 刘建业. 智能自主无人机多源信息融合导航理论与类脑导航技术发展建议[C]//科技2035-导航新技术与学科发展论坛, 2019. XIONG Z, LIU J Y. Multi-source information fusion navigation theory of intelligent autonomous UAV and development suggestions of brain-like navigation technology[C]//Science and Technology 2035-Forum on New Navigation Technologies, 2019(in Chinese). |
[71] | 张佳龙, 闫建国, 张普. 基于反步推演法的多机编队队形重构控制研究[J]. 航空学报, 2019, 40(11):323177. ZHANG J L, YAN J G, ZHANG P. Study on multi-UAV formation forming control based on backing-stepping method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323177(in Chinese). |
[72] | MILFORD M, WYETH G. Mapping a suburb with a single camera using a biologically inspired SLAM system[J]. IEEE Transactions on Robotics, 2008, 24(5):1038-1053. |
[1] | Shengzhe SHAN, Weiwei ZHANG. Air combat intelligent decision-making method based on self-play and deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328723-328723. |
[2] | Linkun HE, Wenchao XUE, Ran ZHANG, Huifeng LI. Guidance and control for powered descent and landing of launch vehicles: Overview and outlook [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628462-628462. |
[3] | Xiangwei ZHU, Dan SHEN, Kai XIAO, Yuexin MA, Xiang LIAO, Fuqiang GU, Fangwen YU, Kefu GAO, Jingnan LIU. Mechanisms, algorithms, implementation and perspectives of brain⁃inspired navigation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 28569-028569. |
[4] | Yuwei LIU, Yuqiang CHENG, Jianjun WU. Research progress of intelligent control methods in space propulsion systems [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528505-528505. |
[5] | WANG Hao, CHEN Genliang. Research progress and perspective of robotic equipment applied in aviation assembly [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 626128-626128. |
[6] | HU Qinglei, SHAO Xiaodong, YANG Haoyang, DUAN Chao. Spacecraft attitude planning and control under multiple constraints: Review and prospects [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527351-527351. |
[7] | CAI Guobiao, ZHANG Baiyi, HE Bijiao, WENG Huiyan, LIU Lihui. Intelligent computation of vacuum plume [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527352-527352. |
[8] | SUN Zhixiao, YANG Shengqi, PIAO Haiyin, BAI Chengchao, GE Jun. A survey of air combat artificial intelligence [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525799-525799. |
[9] | HUANG Xuxing, LI Shuang, YANG Bin, SUN Pan, LIU Xuewen, LIU Xinyan. Spacecraft guidance and control based on artificial intelligence: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524201-524201. |
[10] | ZHANG Weiwei, KOU Jiaqing, LIU Yilang. Prospect of artificial intelligence empowered fluid mechanics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524689-524689. |
[11] | DING Guoru, SUN Jiachen, WANG Haichao, JIAO Yutao. Discussion on technologies for intelligent spectrum management and control under complex electromagnetic environments [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524750-524750. |
[12] | LI Ni, BU Shuhui, SHANG Bolin, LI Yongbo, TANG Zhili, ZHANG Weiwei. Aircraft intelligent design: Visions and key technologies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524752-524752. |
[13] | CHEN Zhijie, TANG Jinhui, WANG Chong, CHENG Jizeng, CAO Shan, SHAO Xin. Using artificial intelligence in airspace system to improve airspace hierarchical governance capability [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 525018-525018. |
[14] | YUAN Li, WANG Shuyi. A review on development of intelligent health management technology for spacecraft control systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 525044-525044. |
[15] | LU Xinlai, DU Ziliang, XU Yun. Review on basic concept and applications for artificial intelligence in aviation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 525150-525150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341