[1] LI S, SHE Y. Recent advances in contact dynamics and post-capture control for combined spacecraft[J]. Progress in Aerospace Sciences, 2021, 120, 100678. [2] 刘付成. 人工智能在航天器控制中的应用[J]. 飞控与探测, 2018, 1(1):16-25. LIU F C. Application of artificial intelligence in spacecraft[J]. Flight Control and Detection, 2018, 1(1):16-25(in Chinese). [3] LI Y K, HAO X L, SHE Y C, et al. Constrained motion planning of free-float dual-arm space manipulator via deep reinforcement learning[J]. Aerospace Science and Technology, 2021, 109:106446. [4] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26 [5] 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):021302. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021302(in Chinese). [6] 周凡桂, 王晓光, 高忠信, 等. 双目视觉绳系支撑飞行器模型位姿动态测量[J]. 航空学报, 2019, 40(12):123059. ZHOU F G, WANG X G, GAO Z X, et al. Binocular vision-based measurement of dynamic motion for aircraft model suspended by wire system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):123059(in Chinese). [7] ZHANG J, DONG C C, ZHANG H, et al. Modeling and experimental validation of sawing based lander anchoring and sampling methods for asteroid exploration[J]. Advances in Space Research, 2018, 61(9):2426-2443. [8] 刘宏, 刘冬雨, 蒋再男. 空间机械臂技术综述及展望[J]. 航空学报, 2021, 42(1):524971. LIU H, LIU D Y, JIANG Z N. Space manipulator technology:Review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):524971(in Chinese). [9] LIU L J, ZHAO G P, BO Y M. Point cloud based relative pose estimation of a satellite in close range[J]. Sensors, 2016, 16(6):824. [10] DURRANT-WHYTE H, BAILEY T. Simultaneous localization and mapping:part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2):99-110. [11] SCHNITZER F, JANSCHEK K, WILLICH G. Experimental results for image-based geometrical reconstruction for spacecraft Rendezvous navigation with unknown and uncooperative target spacecraft[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2012:5040-5045. [12] AUGENSTEIN S, ROCK S M, ENGE P, et al. Monocular pose and shape estimation of moving targets for autonomous rendezvous and docking[D]. Palo Alto:Stanford University, 2011. [13] CHO D M, TSIOTRAS P, ZHANG G C, et al. Robust feature detection, acquisition and tracking for relative navigation in space with a known target[C]//AIAA Guidance, Navigation, and Control (GNC) Conference. Reston:AIAA, 2013. [14] DOR M, TSIOTRAS P. ORB-SLAM applied to spacecraft non-cooperative rendezvous[C]//2018 Space Flight Mechanics Meeting. Reston:AIAA, 2018. [15] TWEDDLE B E. Computer vision based navigation for spacecraft proximity operations[D]. Cambridge:Massachusetts Institute of Technology, 2013. [16] THOMAS D, KELLY S, BLACK J. A monocular SLAM method for satellite proximity operations[C]//2016 American Control Conference (ACC). Piscataway:IEEE Press, 2016:4035-4040. [17] 郝刚涛, 杜小平, 宋建军. 空间翻滚非合作目标相对位姿估计的视觉SLAM方法[J]. 宇航学报, 2015, 36(6):706-714. HAO G T, DU X P, SONG J J. Relative pose estimation of space tumbling non-cooperative target based on vision-only SLAM[J]. Journal of Astronautics, 2015, 36(6):706-714(in Chinese). [18] 刘宗明, 曹姝清, 张宇, 等. 非合作航天器逆深度参数化姿态估计[J]. 光学精密工程, 2017, 25(2):451-459. LIU Z M, CAO S Q, ZHANG Y, et al. Inverse depth parametrization for attitude estimation of a non-cooperative spacecraft[J]. Optics and Precision Engineering, 2017, 25(2):451-459(in Chinese). [19] 刘宗明, 牟金震, 张硕, 等. 空间失效慢旋卫星视觉特征跟踪与位姿测量[J]. 航空学报, 2021, 42(1):524163. LIU Z M, MU J Z, ZHANG S, et al. Visual feature tracking and pose measurement for slow rotating failure satellites[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):524163(in Chinese). [20] 康国华, 马云, 乔思元, 等. 基于先验子图检测的失效航天器SLAM方法[J]. 中国空间科学技术, 2019, 39(1):1-10. KANG G H, MA Y, QIAO S Y, et al. SLAM method of failure spacecraft based on prior submap detecting[J]. Chinese Space Science and Technology, 2019, 39(1):1-10(in Chinese). [21] 朱晏辰. 基于SLAM的非合作目标相对位姿测量研究[D]. 哈尔滨:哈尔滨工业大学, 2018. ZHU Y C. Research on measurement of relative pose for non-cooperative space targets based on SLAM[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese). [22] 周朋博, 刘晓峰, 蔡国平. 基于ORB-SLAM的低照度空间非合作目标的姿态估计[J]. 动力学与控制学报, 2021, 19(1):68-74. ZHOU P B, LIU X F, CAI G P. Attitude estimation of an non-cooperative spacecraft in low-light condition based on ORB-SLAM[J]. Journal of Dynamic and Control, 2021, 9(1):68-74(in Chinese). [23] LEDIG C, THEIS L, F HUSZAR, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:105-114. [24] WANG X T, YU K, WU S X, et al. ESRGAN:enhanced super-resolution generative adversarial networks[C]//European Conference on Computer Vision. 2018:63-79. [25] MA C, RAO Y M, CHENG Y A, et al. Structure-preserving super resolution with gradient guidance[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020:7766-7775. [26] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3:an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021:1-17. [27] 周彦, 旷鸿章, 牟金震, 等. 面向半稠密三维重建的改进单目ORB-SLAM[J]. 计算机工程与应用, 2021, 57(8):180-184. ZHOU Y, KUANG H Z, MU J Z, et al. Improved monocular ORB-SLAM for semi-dense 3D reconstruction[J]. Computer Engineering and Applications, 2021, 57(8):180-184(in Chinese). [28] HUI Z, LI J, GAO X B, et al. Progressive perception-oriented network for single image super-resolution[J]. Information Sciences, 2021, 546:769-786. [29] 于浛, 魏喜庆, 宋申民, 等. 基于自适应容积卡尔曼滤波的非合作航天器相对运动估计[J]. 航空学报, 2014, 35(8):2251-2260. YU H, WEI X Q, SONG S M, et al. Relative motion estimation of non-cooperative spacecraft based on adaptive CKF[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2251-2260(in Chinese). |