[1] AN P, LIU Y, ZHANG W, et al. Vision-based simultaneous localization and mapping on lunar rover[C]//2018 IEEE 3rd International Conference on Image, Vision and Computing. Piscataway:IEEE Press, 2018:487-493. [2] ALLAN M, WONG U, FURLONG P M, et al. Planetary rover simulation for lunar exploration missions[C]//2019 IEEE Aerospace Conference. Piscataway:IEEE Press, 2019:1-19. [3] 刘传凯,王保丰,王镓,等. 嫦娥三号巡视器的惯导与视觉组合定姿定位[J].飞行器测控学报, 2014, 33(3):250-257. LIU C K, WANG B F, WANG J, et al. Integrated INS and vision-based orientation determination and positioning of CE-3 lunar rover[J]. Journal of Spacecraft TT&C Technology, 2014, 33(3):250-257(in Chinese). [4] 王保丰,周建亮,唐歌实. 嫦娥三号巡视器视觉定位方法[J].中国科学:信息科学, 2014, 44(4):452-460. WANG B F, ZHOU J L, TANG G S, et al. Research on visual localization method of lunar rover[J]. Scientia Sinica Informationis, 2014, 44(4):452-460(in Chinese). [5] 喻思琪,张小红,郭斐, 等.卫星导航进近技术进展[J]. 航空学报, 2019, 40(3):322200. YU S Q, ZHANG X H, GUO F, et al. Recent advances in precision approach based on GNSS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322200(in Chinese). [6] ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(3):611-625. [7] FORSTER C, ZHANG Z, GASSNER M, et al. SVO:Semidirect visual odometry for monocular and multicamera systems[J]. IEEE Transactions on Robotics, 2016, 33(2):249-265. [8] MUR-ARTAL R, TARDOS J D. ORB-SLAM2:An open-source slam system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5):1255-1262. [9] GOMEZ-OJEDA R, MORENO F A, ZUNIGA-NOEL D, et al. PL-SLAM:A stereo SLAM system through the combination of points and line segments[J]. IEEE Transactions on Robotics, 2019, 35(3):734-746. [10] LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34(3):314-334. [11] MUR-ARTAL R, TARDOS J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2):796-803. [12] QIN T, LI P L, SHEN S J. VINS-Mono:A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4):1004-1020. [13] SONG B W, CHEN W D, WANG J C, et al. Long-term visual inertial slam based on time series map prediction[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2019:5364-5369. [14] XIE H L, CHEN W D, WANG J C, et al. Hierarchical quadtree feature optical flow tracking based sparse pose-graph visual-inertial SLAM[C]//2020 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2020:58-64. [15] FORSTER C, CARLONE L, DELLAERT F, et al. On-manifold preintegration for real-time visual-inertial odometry[J]. IEEE Transactions on Robotics, 2016, 33(1):1-21. [16] LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the International Joint Conference on Artificial Intelligence,1981:674-679. [17] BOUGUET J Y. Pyramidal implementation of the affine Lucas-Kanade feature tracker description of the algorithm[J]. Intel Corporation, 2001, 5(10):4-15. [18] NEUBECK A, GOOL L V. Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition, 2006:850-855. [19] SHI J B, TOMASI C. Good features to track[C]//1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1994:593-600. [20] CIVERA J, DAVISON A J, MONTIEL J M M. Inverse depth parametrization for monocular SLAM[J]. IEEE Transactions on Robotics, 2008, 24(5):932-945. [21] COLD C. WIP Moon habitat[EB/OL]. (2015-05-20)[2020-04-29]. https://3dwarehouse.sketchup.com/model/854d90c0-c7e4-4f1c-a278-63710f9e8104/WIP-Moon-habitat. [22] BURRI M, NIKOLIC J, GOHL P, et al. The EuRoC micro aerial vehicle datasets[J]. The International Journal of Robotics Research, 2016, 35(10):1157-1163. [23] STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2012:573-580. [24] ZHANG Z, SCARAMUZZA D. A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2018:7244-7251. [25] WEI F, ZHENG L. Rapid and robust initialization for monocular visual inertial navigation within multi-state Kalman filter[J]. Chinese Journal of Aeronautics, 2018, 31(1):148-160. [26] KANG H, AN J, LEE J. IMU-vision based localization algorithm for lunar rover[C]//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway:IEEE Press, 2019:766-771. [27] WEI L, LEE S. 3D peak based long range rover localization[C]//2016 7th International Conference on Mechanical and Aerospace Engineering, 2016:600-604. [28] HEWITT R A, BOUKAS E, AZKARATE M, et al. The Katwijk beach planetary rover dataset[J]. The International Journal of Robotics Research, 2018, 37(1):3-12. |