[1] 陆宇平, 杨朝星, 刘洋洋. 空中加油系统的建模与控制技术综述[J]. 航空学报, 2014, 35(9):2375-2389. LU Y P, YANG C X, LIU Y Y. A survey of modeling and control technologies for aerial refueling system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2375-2389(in Chinese). [2] 费伦, 段海滨, 徐小斌, 等. 基于变权重变异鸽群优化的无人机空中加油自抗扰控制器设计[J]. 航空学报, 2020, 41(1):323490. FEI L, DUAN H B, XU X B, et al. ADRC controller design for UAV based on variable weighted mutant pigeon inspired optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):323490(in Chinese). [3] BOLKCOM C. Air force aerial refueling methods:Flying boom versus hose and drogue:CRS Report for Congress RL32910[R]. Washington, D.C.:The Library of Congress, 2006. [4] VASSBERG J, YEH D, BLAIR A, et al. Dynamic characteristics of a KC-10 wing-pod refueling hose by numerical simulation[C]//20th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2002:2712. [5] 胡孟权, 柳平, 聂鑫, 等. 大气紊流对空中加油软管锥套运动的影响[J]. 飞行力学, 2010, 28(5):20-23. HU M Q, LIU P, NIE X, et al. Influence of air turbulence on the movement of hose-drogue[J]. Flight Dynamics, 2010, 28(5):20-23(in Chinese). [6] RO K, KAMMAN J W. Modeling and simulation of hose-paradrogue aerial refueling systems[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):53-63. [7] WANG H T, DONG X M, XUE J P, et al. Dynamic modeling of a hose-drogue aerial refueling system and integral sliding mode backstepping control for the hose whipping phenomenon[J]. Chinese Journal of Aeronautics, 2014, 27(4):930-946. [8] 王海涛, 董新民, 郭军, 等. 空中加油软管锥套组合体甩鞭现象动力学建模与分析[J]. 航空学报, 2015, 36(9):3116-3127. WANG H T, DONG X M, GUO J, et al. Dynamics modeling and analysis of hose whipping phenomenon of aerial refueling hose-drogue assembly[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3116-3127(in Chinese). [9] LIU Z J, LIU J K, HE W. Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint[J].Automatica, 2017, 77:302-310. [10] LIU Z J, HE X Y, ZHAO Z J, et al. Vibration control for spatial aerial refueling hoses with bounded actuators[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5):4209-4217. [11] ZHU Z H, MEGUID S A.Elastodynamic analysis of aerial refueling hose using curved beam element[J]. AIAA Journal, 2006, 44(6):1317-1324. [12] 刘钒. 飞行器拖曳系统气动特性数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2014:9-33. LIU F. Numerical simulation research on the aerodynamic characteristics of aerial towed cable system[D].Mianyang:China Aerodynamics Research and Development Center, 2014:9-33(in Chinese). [13] SHABANA A A, HUSSIEN H A, ESCALONA J L. Application of the absolute nodal coordinate formulation to large rotation and large deformation problems[J]. Journal of Mechanical Design, 1998, 120(2):188-195. [14] 田强, 张云清, 陈立平, 等. 柔性多体系统动力学绝对节点坐标方法研究进展[J]. 力学进展, 2010, 40(2):189-202. TIAN Q, ZHANG Y Q, CHEN L P, et al.Advances in the absolute nodal coordinate method for the flexible multibody dynamics[J]. Advances in Mechanics, 2010, 40(2):189-202(in Chinese). [15] 洪迪峰. 一维移动介质的多体动力学建模方法研究[D]. 北京:清华大学, 2011:48-53. HONG D F. Multibody dynamic modeling of the linear moving medium[D]. Beijing:Tsinghua University, 2011:48-53(in Chinese). [16] SANDU A, SANDU C, AHMADIAN M. Modeling multibody systems with uncertainties. part I:Theoretical and computational aspects[J]. Multibody System Dynamics, 2006, 15(4):369-391. [17] GERSTMAYR J, SHABANA A A. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation[J]. Nonlinear Dynamics, 2006, 45(1-2):109-130. [18] 徐芝纶. 弹性力学[M]. 4版. 北京:高等教育出版社, 2006:63-67. XU Z L.Elastic mechanics[M].4th. Beijing:Higher Education Press, 2006:63-67(in Chinese). [19] ESCALONA J L, HUSSIEN H A, SHABANA A A. Application of the absolute nodal coordinate formulation to multibody system dynamics[J]. Journal of Sound and Vibration, 1998, 214(5):833-851. [20] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展[J]. 力学学报, 2019, 51(6):1565-1586. SUN J L, TIAN Q, HU H Y. Advances in dynamic modeling and optimization of flexible multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6):1565-1586(in Chinese). [21] 田强, 张云清, 陈立平, 等. 柔性多体系统动力学绝对节点坐标方法研究进展[J]. 力学进展, 2010, 40(2):189-202. TIAN Q, ZHANG Y Q, CHEN L P, et al. Advances in the absolute nodal coordinate method for the flexible multibody dynamics[J]. Advances in Mechanics, 2010, 40(2):189-202(in Chinese). [22] CHOROBA P. Comprehensive study of the wake vortex phenomena to the assessment of its incorporation to ATM for safety and capacity improvements[D]. Zilina:University of Zilina, 2006:1-184. [23] 张庆宇. 飞机尾涡的多普勒激光雷达识别方法研究[D]. 广汉:中国民用航空飞行学院, 2019:12-15. ZHANG Q Y. Aircraft wake vortex recognition method based on Doppler lidar[D].Guanghan:Civil Aviation Flight University of China, 2019:12-15(in Chinese). [24] DOGAN A, LEWIS T A, BLAKE W. Flight data analysis and simulation of wind effects during aerial refueling[J]. Journal of Aircraft, 2008, 45(6):2036-2048. [25] 陈远鑫. 锥套式空中加油管收放动力学仿真[D]. 长沙:国防科技大学, 2016:46-47. CHEN Y X. Numerical simulation of hose-drogue release and retraction dynamics[D]. Changsha:National University of Defense Technology, 2016:46-47(in Chinese). [26] DELISI D, GREENE G, ROBINS R, et al. Aircraft wake vortex core size measurements[C]//21 st AIAA Applied Aerodynamics Conference. Reston:AIAA, 2003:3811. [27] 彭程. 空中加油软管收放过程中动态特性研究[D]. 南京:南京航空航天大学, 2018:27-28. PENG C. Research on dynamic characteristics of aerial refueling hose in deployment and retrieval process[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:27-28(in Chinese). [28] BLOY A W, KHAN M M. Modelling of the hose and drogue in air-to-air refuelling[J]. The Aeronautical Journal, 2002, 106(1055):17-26. [29] 颜庆津. 数值分析[M]. 3版. 北京:北京航空航天大学出版社, 2006:164-174. YAN Q J.Numerical analysis[M]. 3rd.Beijing:Beihang University, 2006:164-174(in Chinese). [30] 刘延柱, 潘振宽, 戈新生. 多体系统动力学[M]. 2版. 北京:高等教育出版社, 2014. LIU Y Z, PAN Z K, GE X S. Dynamics of multibody systems[M].2nd.Beijing:Higher Education Press, 2014(in Chinese). [31] PENCE B L, FATHY H K, STEIN J L. Recursive maximum likelihood parameter estimation for state space systems using polynomial chaos theory[J].Automatica, 2011, 47(11):2420-2424. [32] 凌锋. 基于多项式混沌方法的汽车悬架系统不确定性研究[D]. 武汉:华中科技大学, 2013:15-22. LING F. Uncertainty analysis of vehicle suspension systems based on polynomial chaos methods[D]. Wuhan:Huazhong University of Science and Technology, 2013:15-22(in Chinese). [33] 邰永敢. 基于多项式混沌展开的桥梁结构动力特性不确定性量化[D]. 合肥:合肥工业大学, 2019. TAI Y G. Uncertainty quantification of dynamic characteristics of bridge structures based on polynomial chaos expansion[D]. Hefei:Hefei University of Technology, 2019(in Chinese). [34] 皮霆, 张云清, 吴景铼. 基于多项式混沌方法的柔性多体系统不确定性分析[J]. 中国机械工程, 2011, 22(19):2341-2343, 2348. PI T, ZHANG Y Q, WU J L. Uncertainty analysis of flexible multibody systems using polynomial chaos methods[J]. China Mechanical Engineering, 2011, 22(19):2341-2343, 2348(in Chinese). [35] HERZOG M, GILG A, PAFFRATH M, et al.Intrusive versus non-intrusive methods for stochastic finite elements, from nano to space[M]. Berlin:Springer Berlin Heidelberg, 2008:161-174. |