[1] ZHANG L, WEI C Z, WU R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82-83:70-79. [2] ZHANG L, WEI C Z, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica, 2019, 159:362-370. [3] LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(1):65-77. [4] RAGAB M, CHEATWOOD F M. Launch vehicle recovery and reuse[C]//AIAA SPACE 2015 Conference and Exposition. Reston:AIAA, 2015. [5] OUNG R, D'ANDREA R. The distributed flight array:Design, implementation, and analysis of a modular vertical take-off and landing vehicle[J]. The International Journal of Robotics Research, 2014, 33(3):375-400. [6] ZHAO J, LI H Y, HE X Y, et al. Uncertainty analysis for return trajectory of vertical takeoff and vertical landing reusable launch vehicle[J]. Mathematical Problems in Engineering, 2020, 2020:1-18. [7] WANG J B, CUI N G, WEI C Z. Optimal rocket landing guidance using convex optimization and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5):1078-1092. [8] SIMPLÍCIO P, MARCOS A, BENNANI S. Reusable launchers:development of a coupled flight mechanics, guidance, and control benchmark[J]. Journal of Spacecraft and Rockets, 2019, 57(1):74-89. [9] LI S, JIANG X Q. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69:40-57. [10] MA L, WANG K X, SHAO Z J, et al. Direct trajectory optimization framework for vertical takeoff and vertical landing reusable rockets:case study of two-stage rockets[J]. Engineering Optimization, 2019, 51(4):627-645. [11] MA L, WANG K X, XU Z H, et al. Trajectory optimization for powered descent and landing of reusable rockets with restartable engines[C]//69th International Astronautical Congress, 2018. [12] WANG C, SONG Z Y. Trajectory optimization for reusable rocket landing[C]//2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC). Piscataway:IEEE Press, 2018:1-6. [13] 高朝辉, 张普卓, 刘宇, 等. 垂直返回重复使用运载火箭技术分析[J]. 宇航学报, 2016, 37(2):145-152. GAO Z H, ZHANG P Z, LIU Y, et al. Analysis of vertical landing technique in reusable launch vehicle[J]. Journal of Astronautics, 2016, 37(2):145-152(in Chinese). [14] YAO W, CHEN X Q, LUO W C, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6):450-479. [15] DU X P, CHEN W. Sequential optimization and reliability assessment method for efficient probabilistic design[J]. Journal of Mechanical Design, 2004, 126(2):225-233. [16] CHANDU S V L, GRANDHI R V. General purpose procedure for reliability based structural optimization under parametric uncertainties[J]. Advances in Engineering Software, 1995, 23(1):7-14. [17] MíNGUEZ R, CASTILLO E. Reliability-based optimization in engineering using decomposition techniques and FORMS[J]. Structural Safety, 2009, 31(3):214-223. [18] WANG F G, YANG S X, XIONG F F, et al. Robust trajectory optimization using polynomial chaos and convex optimization[J]. Aerospace Science and Technology, 2019, 92:314-325. [19] 罗佳奇, 陈泽帅, 曾先. 考虑几何设计参数不确定性影响的涡轮叶栅稳健性气动设计优化[J]. 航空学报, 2020, 41(10):123826. LUO J Q, CHEN Z S, ZENG X. Robust aerodynamic design optimization of turbine cascades considering uncertainty of geometric design parameters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):123826(in Chinese). [20] JIANG X Q. Robust optimization of Mars entry trajectory under uncertainty[C]//2018 Space Flight Mechanics Meeting. Reston:AIAA, 2018. [21] JIANG X Q, LI S. Mars entry trajectory planning using robust optimization and uncertainty quantification[J]. Acta Astronautica, 2019, 161:249-261. [22] YADAV O P, BHAMARE S S, RATHORE A. Reliability-based robust design optimization:A multi-objective framework using hybrid quality loss function[J]. Quality and Reliability Engineering International, 2010, 26(1):27-41. [23] LIM J, JANG Y S, CHANG H S, et al. Role of multi-response principal component analysis in reliability-based robust design optimization:An application to commercial vehicle design[J]. Structural and Multidisciplinary Optimization, 2018, 58(2):785-796. [24] BOHLOURI V, JALALI-NAINI S H. Application of reliability-based robust optimization in spacecraft attitude control with PWPF modulator under uncertainties[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(10):1-15. [25] SIMPLÍCIO P, MARCOS A, BENNANI S. Reusable launchers:development of a coupled flight mechanics, guidance, and control benchmark[J]. Journal of Spacecraft and Rockets, 2019, 57(1):74-89. [26] STAPPERT S, WILKEN J, SIPPEL M. Evaluation of European reusable VTVL booster stages[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018. [27] RANGAVAJHALA S, MESSAC A. Designer's preferences regarding equality constraints in robust design optimization[J]. Structural and Multidisciplinary Optimization, 2010, 41(1):17-38. [28] XIU D B, KARNIADAKIS G E. The Wiener:Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2):619-644. [29] DU X P, CHEN W. A most probable point based method for uncertainty analysis[C]//Proceedings of ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2020:429-438. [30] REN Y, SHAN J J. Reliability-based soft landing trajectory optimization near asteroid with uncertain gravitational field[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(9):1810-1820. [31] HUANG Y C, LI H Y. Reliability-based trajectory optimization using nonintrusive polynomial chaos for Mars entry mission[J]. Advances in Space Research, 2018, 61(11):2854-2869. |