[1] |
HAND E. Interplanetary small satellites come of age[J]. Science,2018,36(6404):736-737.
|
[2] |
ROMERO C A, BIGGS J, TOPPUTO F. Attitude control for the LUMIO CubeSat in deep space[C]//70th International Astronautical Congress (IAC 2019), 2019:1-13.
|
[3] |
HE Q, LI J, HAN C. Multiple-revolution solutions of the transverse-eccentricity-based lambert problem[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):265-269.
|
[4] |
YANG Z, LUO Y Z, ZHANG J, et al. Homotopic perturbed Lambert algorithm for long-duration rendezvous optimization[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(11):2215-2223.
|
[5] |
SUN L, HUO W. 6-DOF integrated adaptive backstepping control for spacecraft proximity operations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2433-2443.
|
[6] |
CAPELLO E, PUNTA E, DABBENE F, et al. Sliding-mode control strategies for rendezvous and docking maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(6):1481-1487.
|
[7] |
卢山, 徐世杰. 航天器椭圆轨道自主交会的自适应学习控制策略[J]. 航空学报, 2009, 30(1):127-131. LU S, XU S J. Adaptive learning control strategy for autonomous rendezvous of spacecrafts on elliptical orbit[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1):127-131(in Chinese).
|
[8] |
BIGGS J D, NEGRI A. Orbit-attitude control in a circular restricted three-body problem using distributed reflectivity devices[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(12):2712-2721.
|
[9] |
LIU X, MENG Z, YOU Z. Adaptive collision-free formation control for under-actuated spacecraft[J]. Aerospace Science and Technology, 2018, 79:223-232.
|
[10] |
INVERNIZZI D, LOVERA M, ZACCARIAN L. Dynamic attitude planning for trajectory tracking in thrust-vectoring UAVs[J]. IEEE Transactions on Automatic Control, 2019, 65(1):453-460.
|
[11] |
HAGHIGHI R, PANG C K. Robust concurrent attitude-position control of a swarm of underactuated nanosatellites[J]. IEEE Transactions on Control Systems Technology, 2017, 26(1):77-88.
|
[12] |
HUANG X, YAN Y. Saturated backstepping control of underactuated spacecraft hovering for formation flights[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4):1988-2000.
|
[13] |
MURALIDHARAN V, EMAMI M R. Concurrent rendezvous control of underactuated spacecraft[J]. Acta Astronautica, 2017, 138:28-42.
|
[14] |
CHEN Y, HE Z, ZHOU D, et al. Integrated guidance and control for microsatellite real-time automated proximity operations[J]. Acta Astronautica, 2018, 148:175-185.
|
[15] |
YOSHIMURA Y. Optimal formation reconfiguration of satellites under attitude constraints using only thrusters[J]. Aerospace Science and Technology, 2018, 77:449-457.
|
[16] |
ASHRAFIUON H, NERSESOV S, CLAYTON G. Trajectory tracking control of planar underactuated vehicles[J]. IEEE Transactions on Automatic Control, 2016, 62(4):1959-1965.
|
[17] |
BIGGS J D, HENNINGER H. Motion planning on a class of 6-D Lie groups via a covering map[J]. IEEE Transactions on Automatic Control, 2018, 64(9):3544-3554.
|
[18] |
HENNINGER H C, BIGGS J D. Optimal under-actuated kinematic motion planning on the ε-group[J]. Automatica, 2018, 90:185-195.
|
[19] |
MITANI S, YAMAKAWA H. Novel nonlinear rendezvous guidance scheme under constraints on thrust direction[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(6):1656-1671.
|
[20] |
MITANI S, YAMAKAWA H. Continuous-thrust transfer with control magnitude and direction constraints using smoothing techniques[J]. Journal of Guidance, Control, and Dynamics, 2012, 36(1):163-174.
|
[21] |
LUO Y, ZHANG J, TANG G. Survey of orbital dynamics and control of space rendezvous[J]. Chinese Journal of Aeronautics, 2014, 27(1):1-11.
|
[22] |
BIGGS J, HOLDERBAUM W, JURDJEVIC V. Singularities of optimal control problems on some 6-D Lie groups[J]. IEEE Transactions on Automatic Control, 2007, 52(6):1027-1038.
|
[23] |
BIGGS J, HOLDERBAUM W. Integrable quadratic Hamiltonians on the Euclidean group of motions[J]. Journal of Dynamical and Control Systems, 2010, 16(3):301-317.
|
[24] |
BIGGS J, HOLDERBAUM W. Planning rigid body motions using elastic curves[J]. Mathematics of Control, Signals, and Systems, 2008, 20(4):351-367.
|
[25] |
GENG Y, LI C, GUO Y, et al. Fixed-time near-optimal control for repointing maneuvers of a spacecraft with nonlinear terminal constraints[J]. ISA Transactions, 2020,97:401-414.
|
[26] |
PUKDEBOON C, ZINOBER A S I. Control Lyapunov function optimal sliding mode controllers for attitude tracking of spacecraft[J]. Journal of the Franklin Institute, 2012, 349(2):456-475.
|
[27] |
PUKDEBOON C, KUMAM P. Robust optimal sliding mode control for spacecraft position and attitude maneuvers[J]. Aerospace Science and Technology, 2015, 43:329-342.
|
[28] |
DAS M, MAHANTA C. Optimal second order sliding mode control for nonlinear uncertain systems[J]. ISA Transactions, 2014, 53(4):1191-1198.
|
[29] |
PRIMBS J A, NEVISTIĆ V, DOYLE J C. Nonlinear optimal control:A control Lyapunov function and receding horizon perspective[J]. Asian Journal of Control, 1999, 1(1):14-24.
|
[30] |
SONTAG E D. A ‘universal’ construction of Artstein's theorem on nonlinear stabilization[J]. Systems & Control Letters, 1989, 13(2):117-123.
|
[31] |
刘将辉, 李海阳, 张政, 等. 相对失控翻滚目标悬停的自适应模糊滑模控制[J]. 航空学报, 2019, 40(5):322430. LIU J H, LI H Y, ZHANG Z, et al. Adaptive fuzzy sliding mode control for body-fixed hovering over uncontrolled tumbling satellite[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):322430(in Chinese).
|
[32] |
陈弈澄, 齐瑞云, 张嘉芮, 等. 混合小推力航天器轨道保持高性能滑模控制[J]. 航空学报, 2019, 40(7):322430. CHEN Y C, QI R Y, ZHANG J R, et al. High performance sliding mode control for orbit keeping of spacecraft using hybrid low-thrust propulsion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322430(in Chinese).
|
[33] |
LEMMER K. Propulsion for cubesats[J]. Acta Astronautica, 2017, 134:231-243.
|