ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2019, Vol. 40 ›› Issue (7): 22874-022874.doi: 10.7527/S1000-6893.2019.22874
• Review • Previous Articles Next Articles
NING Xianwen, LI Jindong, WANG Yuying, JIANG Fan
Received:
2018-12-26
Revised:
2019-01-10
Online:
2019-07-15
Published:
2019-01-24
Supported by:
CLC Number:
NING Xianwen, LI Jindong, WANG Yuying, JIANG Fan. Review on construction of new spacecraft thermal control system in China[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 22874-022874.
[1] 苗建印, 钟奇, 赵啟伟, 等. 航天器热控制技术[M]. 北京:北京理工大学出版社, 2018. MIAO J Y, ZHONG Q, ZHAO Q W, et al. Spacecraft thermal control technology[M]. Beijing:Beijing Institute of Technology Press, 2018(in Chinese). [2] 侯增祺, 胡金刚. 航天器热控制技术——原理及其应用[M]. 北京:中国科学技术出版社, 2007. HOU Z Q, HU J G. Spacecraft thermal control technology-Theory and application[M]. Beijing:China Science Technology Press, 2007(in Chinese). [3] 闵桂荣, 郭舜. 航天器热控制[M]. 第二版. 北京:科学出版社, 1998. MIN G R, GUO S. Spacecraft thermal control[M]. 2nd ed. Beijing:Science Press, 1998(in Chinese). [4] GILMORE D G. Spacecraft thermal control handbook[M]. 2nd ed. California:The Aerospace Press·El Segundo, 2002. [5] 张加迅, 宁献文. 分舱耦合体系下的新型卫星热控平台技术[J]. 航天器工程, 2008, 17(2):53-58. ZHAHG J X, NING X W. New satellite thermal control platform technique with coupled separated-module thermal control system[J]. Spacecraft Engineering, 2008, 17(2):53-58(in Chinese). [6] 宁献文, 王玉莹, 宋馨, 等. 卫星平台模块化柔性热控体系结构[J]. 航天器工程, 2012, 21(2):50-55. NING X W, WANG Y Y, SONG X, et al. Modular flexible thermal control architecture for satellite bus[J]. Spacecraft Engineering, 2012, 21(2):50-55(in Chinese). [7] 余后满, 范含林. 航天器总体设计技术成就与展望[J]. 航天器工程, 2008, 17(4):1-5. YU H M, FAN H L. Achievements and prospect of spacecraft system design technology[J]. Spacecraft Engineering, 2008, 17(4):1-5(in Chinese). [8] 范含林. 航天器热控制技术发展综述[C]//中国宇航学会飞行器总体专业委员会2004年学术研讨会, 2004. FAN H L. Development of spacecraft thermal control technology[C]//The 2004 Academy Conference of General Professional Committee of Aerospace Vehicles of China Astronautical Society, 2004(in Chinese). [9] 刘庆志, 任红艳, 赵欣. 实践十号返回式卫星热设计改进及效果[C]//第十三届空间热物理会议, 2017. LIU Q Z, REN H Y, ZHAO X. Improvement and effect of thermal design for PRACTICE No.10 returning satellite[C]//13th Space Thermophysics Society Congress, 2017(in Chinese). [10] MATTHIJSSEN R, VAN PUT P, VAN DER LIST M C A M. Development of an advanced mechanically pumped fluid loop for thermal control of large future telecommunication platforms[R]. De Wijper:Bradford Engineering, 2005. [11] BIRUR G C. JPL advanced thermal control technology roadmap[R]. Pasadena, CA:Jet Propulsion Laboratory of California Institute of Technology, 2005. [12] SHEN F, DROLEN B, PRABHU J, et al. Life mechanical fluid pump for space applications:AIAA-2005-0273[R]. Reston, VA:AIAA, 2005. [13] 李劲东, 张加迅. 热管理技术在大型航天器热设计中的应用[C]//第五届空间热物理会议, 2000. LI J D, ZHANG J X. Application of thermal management technology in thermal design of large spacecraft[C]//5th Space Thermophysics Society Congress, 2000(in Chinese). [14] 范含林, 黄家荣. 载人航天器热控制技术问题探讨[J]. 载人航天, 2010, 16(2):40-44. FAN H L, HUANG J R. Study on thermal control technologies for manned spacecrafts[J]. Manned Spaceflight, 2010, 16(2):40-44(in Chinese). [15] 范含林. 载人航天器热管理技术发展综述[J]. 航天器工程, 2007, 16(1):28-32. FAN H L. Manned spacecraft thermal management technologies development overview[J]. Spacecraft Engineering, 2007, 16(1):28-32(in Chinese). [16] 满广龙, 曹剑峰, 孟繁孔. 交会对接组合体热管理研究[J]. 航天器工程, 2011, 20(6):32-37. MAN G L, CAO J F, MENG F K. Research on a thermal management system for docking spacecraft combination[J]. Spacecraft Engineering, 2011, 20(6):32-37(in Chinese). [17] 付仕明, 徐小平, 裴一飞. 空间站集成全局热数学模型的建模和分析[J]. 航天器环境工程, 2010, 27(1):75-79. FU S M, XU X P, PEI Y F. The integrated overall thermal mathematical model of a space station[J]. Spacecraft Environment Engineering, 2010, 27(1):75-79(in Chinese). [18] 范含林, 黄家荣, 刘庆志, 等. 载人运输飞船流体回路方案研究[J]. 中国空间科学技术, 2007, 27(5):38-43. FAN H L, HUANG J R, LIU Q Z, et al. Scheme of fluid loop system on manned spacecraft for transport[J]. Chinese Space Science and Technology, 2007, 27(5):38-43(in Chinese). [19] 黄家荣, 范宇峰, 范含林. 载人运输飞船流体回路试验研究[J]. 中国空间科学技术, 2010, 30(1):65-71. HUANG J R, FAN Y F, FAN H L. Experiment study of fluid loop system on manned spaceship[J]. Chinese Space Science and Technology, 2007, 30(1):65-71(in Chinese). [20] 黄家荣, 范宇峰, 刘炳清, 等. 神舟七号飞船热控分系统设计和在轨性能评估[J]. 中国空间科学技术, 2009, 29(5):1-7. HUANG J R, FAN Y F, LIU B Q, et al. Design and on-orbit performance evaluation of thermal control system for SHENZHOU-7 spaceship[J]. Chinese Space Science and Technology, 2009, 29(5):1-7(in Chinese). [21] 黄家荣, 范宇峰, 禹颂耕, 等. 神舟七号飞船单相热控流体回路在轨性能评价[J]. 航天器工程, 2009, 18(4):37-43. HUANG J R, FAN Y F, YU S G, et al. On-orbit performance evaluation of single-phase fluid loop system for shenzhou-7 spaceship[J]. Spacecraft Engineering, 2009, 18(4):37-43(in Chinese). [22] 于新刚, 黄家荣, 张立, 等. 神舟九号热控设计及在轨工作评价[J]. 载人航天, 2013, 19(2):25-29. YU X G, HUANG J R, ZHANG L, et al. Thermal design and on-orbit performance evaluation of Shenzhou 9 Spaceship[J]. Manned Spaceflight, 2013, 19(2):25-29(in Chinese). [23] ANDERSON G, MARTIN C E. Evaluation and application of Apollo ECLS/ATCS systems to future manned missions:AIAA-2005-0703[R]. Reston, VA:AIAA, 2005. [24] 徐小平, 李劲东, 范含林. 大型航天器热管理系统集成分析[J]. 中国空间科学技术, 2004, 24(4):11-17. XU X P, LI J D, FAN H L. Integrated analysis of thermal management system in large spacecraft[J]. Chinese Space Science and Technology, 2004, 24(4):11-17(in Chinese). [25] 陈自发, 徐云东, 郭涛, 等. 国际空间站内部主动热控系统[J]. 上海航天, 2013, 30(3):27-32. CHEN Z F, XU Y D, GUO T, et al. Internal active thermal control system of international space station[J]. Aerospace Shanghai, 2013, 30(3):27-32(in Chinese). [26] 向艳超, 邵兴国, 刘自军, 等. 嫦娥一号卫星热控系统及其特点[J]. 航天器工程, 2008, 17(5):50-55. XIANG Y C, SHAO X G, LIU Z J, et al. Thermal control system and its characteristics of Change-1[J]. Spacecraft Engineering, 2008, 17(5):50-55(in Chinese). [27] 邵兴国, 向艳超, 谭沧海. 嫦娥一号卫星热控设计中热管的应用及验证[J]. 航天器工程, 2008, 17(1):63-67. SHAO X G, XIANG Y C, TAN C H. Heat pipe applications and test in Chang'e-1 satellite[J]. Spacecraft Engineering, 2008, 17(1):63-67(in Chinese). [28] 刘自军, 向艳超, 斯东波, 等. 嫦娥三号探测器热控系统设计与验证[J]. 中国科学:技术科学, 2014, 44(2):589-596. LIU Z J, XIANG Y C, SI D B, et al. Design and verification of Change-3 thermal control system[J]. Scientia Sinica:Technologica, 2014, 44(2):589-596(in Chinese). [29] 向艳超, 陈建新, 张冰强. 嫦娥三号玉兔巡视器热控制[J]. 宇航学报, 2015, 36(10):1203-1209. XIANG Y C, CHEN J X, ZHANG B Q. Thermal control for jade rabbit rover of Chang' E-3[J]. Journal of Astronautics, 2015, 36(10):1203-1209(in Chinese). [30] 张红星, 苗建印, 王录, 等. 嫦娥三号两相流体回路的地面试验验证方法及试验结果分析[J]. 中国科学:技术科学, 2014, 44(4):353-360. ZHANG H X, MIAO J Y, WANG L, et al. Ground test method and results of closed two-phase thermosyphons for the moon exploration spacecraft Chang'E-3[J]. Scientia Sinica:Technologica, 2014, 44(4):353-360(in Chinese). [31] 宁献文, 苏生, 陈阳, 等. 月地高速再入返回器热控设计及实现[J]. 中国科学:技术科学, 2015, 45(2):145-150. NING X W, SU S, CHEN Y, et al. Design and implementation of circumlunar return and reentry spacecraft thermal control system[J]. Scientia Sinica:Technologica, 2015, 45(2):145-150(in Chinese). [32] 宁献文, 蒋凡, 张栋, 等. 月球无人采样返回探测器一体化热管理方案研究[J]. 航天器环境工程, 2017, 34(6):598-603. NING X W, JIANG F, ZHANG D, et al. Research on an integrated thermal management scheme for lunar robotic sampling and return probe[J]. Spacecraft Environment Engineering, 2017, 34(6):598-603(in Chinese). [33] 王玉莹, 钟奇, 宁献文, 等. 水升华器空间应用研究[J]. 航天器工程, 2013, 22(3):105-112. WANG Y Y, ZHONG Q, NING X W, et al. Overview of space application and development of water sublimator[J]. Spacecraft Engineering, 2013, 22(3):105-112(in Chinese). [34] 王玉莹. 空间水升华器相变传热传质动态特性及稳定性研究[D]. 北京:中国空间技术研究院, 2014. WANG Y Y. Study on the transient performance and stability of phase change heat and mass transfer of space water sublimator[D]. Beijing:China Academy of Space Technology, 2014(in Chinese). [35] WANG Y Y, ZHONG Q, NING X W, et al. Transient study about the heat transfer of sublimator combined with fluid loop[C]//64th International Astronautical Congress, 2013. [36] 王玉莹, 钟奇, 宁献文, 等. 具有恒热流边界的水升华器启动特性实验研究[J]. 航空学报, 2016, 35(6):57-62. WANG Y Y, ZHONG Q, NING X W, et al. Experiment on startup performance of sublimator with constant heat flux boundary[J]. Acta Aeronautica et Astronautica Sinica, 2016, 35(6):57-62(in Chinese). [37] WANG Y Y, ZHONG Q, LI J D, et al. Numerical and experimental study on the heat and mass transfer of porous plate water sublimator with constant heat flux boundary condition[J]. Applied Thermal Engineering, 2014, 67:469-479. [38] 刘畅, 宁献文, 苗建印, 等. 多孔板结冰"自强化"效应对水升华器性能影响的实验研究[J]. 航空学报, 2018, 39(9):122046. LIU C, NING X W, MIAO J Y, et al. Experimental research on effects of porous plate's frost "self-strengthen" on water sublimator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):122046(in Chinese). [39] BIRUR G C, BHANDARI P. Mars pathfinder active thermal control system:Group and flight performance of a mechanically pumped cooling loop:AIAA-1997-2469[R]. Reston, VA:AIAA, 1997. [40] BIRUR G C, BHANDARI P. Long term life testing of a mechanically pumped cooled loop for spacecraft thermal control:AIAA-1997-2470[R]. Reston, VA:AIAA, 1997. [41] BHANDARI P, DUDIK B, BIRUR G, et al. Mars science laboratory launch pad thermal control[C]//Proceedings of the 41st International Conference on Environmental Systems. Reston, VA:AIAA, 2011. [42] PARIS A D, KELLY F P, KEMPENAAR J E, et al. In-flight performance of the Mars Science Laboratory spacecraft cruise phase thermal control systems[C]//Proceedings of the 42nd International Conference on Environmental Systems. Reston, VA:AIAA, 2012. [43] BIRUR G C, BHANDARI P, BAME D, et al. From concept to flight:An active fluid loop based thermal control system for Mars Science Laboratory Rover[C]//Proceedings of the 42nd International Conference on Environmental Systems. Reston, VA:AIAA, 2012. [44] 贾阳, 刘强, 向艳超, 等. 深空探测对航天器热控技术的推动[J]. 航天器环境工程, 2016, 33(2):115-120. JIA Y, LIU Q, XIANG Y C, et al. The role of deep space exploration in promoting spacecraft thermal control technologies[J]. Spacecraft Environment Engineering, 2016, 33(2):115-120(in Chinese). [45] 宁献文, 张加迅. 基于泵变频调速的航天器热控制技术[J]. 中国空间科学技术, 2011, 31(2):47-51. NING X W, ZHANG J X. Spacecraft thermal control technology based on variable frequency pump[J]. Chinese Space Science and Technology, 2011, 31(2):47-51(in Chinese). [46] NING X W, WANG Y Y, ZHANG J X, et al. An equivalent ground thermal test method for single-phase fluid loop space radiator[J]. Chinese Journal of Aeronautics, 2015, 28(1):86-92. [47] 于新刚, 徐侃, 苗建印, 等. 高热流散热泵驱两相流体回路设计及飞行验证[J]. 宇航学报, 2017, 38(2):192-197. YU X G, XU K, MIAO J Y, et al. Design and on-board validation of pumped two-phase fluid loop for high heat flux removal[J]. Journal of Astronautics, 2017, 38(2):192-197(in Chinese). [48] 孙伟伟, 顾燕萍, 陈钢, 等. 空间微泵驱动主动流体回路热控技术研究进展[C]//第十二届空间热物理会议, 2015. SUN W W, GU Y P, CHENG G, et al. Research evolution on thermal control technology for active fluid driven by space micropump[C]//12th Space Thermophysics Society Congress, 2015(in Chinese). [49] LI Y Z, LI M M, LEE K M. A dual-driven intelligent combination control of heat pipe space cooling system[J]. Chinese Journal Aeronautics, 2012, 25(4):566-574. [50] WANG J, LI Y Z, WANG J. Transient performance and intelligent combination control of a novel spray cooling loop system[J]. Chinese Journal of Aeronautics, 2013, 26(5):1173-1181. [51] 徐向华, 程雪涛, 梁新刚. 载人航天器主动热控制系统流体回路的优化设计[J]. 宇航学报, 2011, 32(10):2285-2293. XU X H, CHENG X T, LIANG X G. Design and optimization for fluid loops of active thermal control system in manned spacecraft[J]. Journal of Astronautics, 2011, 32(10):2285-2293(in Chinese). [52] YOUNG Q E, STUCKER B, GILLESPIE T, et al. Modular thermal control architecture for modular spacecraft:AIAA-2008-1959[R]. Reston, VA:AIAA, 2008. [53] SWANSON T D, BIRUR G C. NASA thermal control technologies for robotic spacecraft[J]. Applied Thermal Engineering, 2003, 23:1055-1065. [54] LEE S H, MUDAWAR A I, HASAN M M. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft[J]. Applied Thermal Engineering, 2016, 100:190-214. [55] GANAPATHI G B, GANI B, GAJANANA B, et al. Two phase vs. single phase thermal loop trades for exploration mission LAT Ⅱ architecture:SAE 2008-01-1958[R]. 2008. [56] 陈江平, 黄家荣, 范宇峰, 等. "阿波罗"登月飞行器热控系统方案概述[J]. 载人航天, 2012, 18(1):40-47. CHEN J P, HUANG J R, FAN Y F, et al. An overview on thermal control system design of Apollo[J]. Manned Spaceflight, 2012, 18(1):40-47(in Chinese). [57] METTS J G, KLAUS D M. Equivalent system mass analysis for space suit thermal control[C]//41st International Conference on Environmental Systems. Reston, VA:AIAA, 2011. [58] STEPHAN R A. Overview of the Altair lunar lander thermal control system design and the impacts of global access[C]//Proceeding of the 41st International Conference on Environmental Systems, 2011. |
[1] | Honglin ZHANG, Jianjun LUO, Weihua MA. Spacecraft game decision making for threat avoidance of space targets based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329136-329136. |
[2] | Ruitong ZHANG, Lei WANG, Jiajia LIU, Jihong ZHU. Lightweight design of space trusses considering joint parameterization [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529715-529715. |
[3] | Jidong SU, Weilin XU, Shenghua ZHAI, Wei WANG, Yating HE. Practice and prospect of space AD hoc network technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529912-529912. |
[4] | Sai ZHANG, Zhen YANG, Xiangnan DU, Yazhong LUO. Threat avoidance strategy of spacecraft maneuvering approach based on orbital reachable domain [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328778-328778. |
[5] | Kai NING, Baolin WU. Event-triggered-based orbit maintenance control for spacecraft subsatellite point control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329412-329412. |
[6] | Ming LIU, Ruichao FAN, Shi QIU, Xibin CAO. Spacecraft attitude-orbit prescribed performance control based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628313-628313. |
[7] | Dawei ZHANG, Guoping LIU. A high⁃order fully actuated predictive control approach of spacecraft flying⁃around under time⁃variant communication constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628633-628633. |
[8] | Leyan FANG, Han MENG, Mingzhe HOU. Iterative learning sliding mode control with precise parameter estimation and its application [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628889-628889. |
[9] | Guangquan DUAN, Guoping LIU. Adaptive prescribed control of position and attitude of combined spacecraft based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628837-628837. |
[10] | Bing XIAO, Haichao ZHANG. Reinforcement learning robust optimal control for spacecraft attitude stabilization [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628890-628890. |
[11] | Kaixin CUI, Guangren DUAN. High⁃order fully actuated anti⁃disturbance control for a type of combined spacecraft based on disturbance observer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628892-628892. |
[12] | Chao DUAN, Xiaodong SHAO, Qinglei HU, Huaining WU. Attitude tracking of underactuated spacecraft based on transverse function [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628910-628910. |
[13] | Siyuan LIU, Yongqi XIE, Jian SU, Hongxing ZHANG, Guoguang LI. Steady-state working performance of loop heat pipes in acceleration environment: Comparative study [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126803-126803. |
[14] | Yuanyuan TU, Dayi WANG, Xiangyan ZHANG, Jiaxing LI, Xiaofeng HUANG. Reconfigurability and autonomous reconfiguration methods of spacecraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628855-628855. |
[15] | Chuang XU, Baolin WU. Distributed fixed-time output-feedback attitude consensus control for multiple spacecraft with input saturation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 327465-327465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341