[1] 龚胜平, 李俊峰. 太阳帆航天器动力学与控制[M]. 北京:清华大学出版社, 2015:2-3. GONG S P, LI J F. Dynamics and control of solar sail spacecraft[M]. Beijing:Tsinghua University Press, 2015:2-3(in Chinese). [2] 胡海岩. 太阳帆航天器的关键技术[J]. 深空探测学报, 2016, 3(4):334-344. HU H Y. Key technologies of solar sail spacecraft[J]. Journal of Deep Space Exploration, 2016, 3(4):334-344(in Chinese). [3] TSUDA Y, MORI O, FUNASE R, et al. Achievement of IKAROS-Japanese deep space solar sail demonstration mission[J]. Acta Astronautica, 2013, 82(2):183-188. [4] 张海博, 胡庆雷, 马广富, 等. 考虑输入饱和的多航天器系统姿轨耦合分布式协同跟踪控制[J]. 宇航学报, 2013, 34(10):1337-1345. ZHANG H B, HU Q L, MA G F, et al. Multiple spacecraft systems coupled attitude and orbit distributed coordinated tracking control with input saturation[J]. Journal of Astronautics, 2013, 34(10):1337-1345(in Chinese). [5] 吴锦杰, 刘昆, 韩大鹏. 考虑输入饱和的航天器相对运动鲁棒自适应控制[J]. 航空学报, 2013, 34(4):890-901. WU J J, LIU K, HAN D P. Robust adaptive control for relative motion of spacecraft under input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):890-901(in Chinese). [6] 史晓宁, 荣思远, 白瑜亮. 太阳帆航天器行星分段捕获控制方法研究[J]. 上海航天, 2016, 33(2):87-93. SHI X N, RONG S Y, BAI Y L. Study on solar sail planet-centered segmented capture method[J]. Aerospace Shanghai, 2016, 33(2):87-93(in Chinese). [7] FARRES A. Transfer orbits to L4 with a solar sail in theearth-sun system[J]. Acta Astronautica, 2017, 137:78-90. [8] HEILIGERS J. Non-keplerian orbits using hybrid solar sail propulsion for earth applications[D]. Scotland:University of Strathclyde, 2012:24-25. [9] HEILIGERS J, MCINNES C R, BIGGS J D, et al. Displaced geostationary orbits using hybrid low-thrust propulsion[J]. Acta Astronautica, 2012, 71:51-67. [10] ANDERSON P, MACDONALD M. Static highly elliptical orbits using hybrid low-thrust propulsion[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3):870-880. [11] MENGALI G, QUARTA A A. Trajectory design with hybrid low-thrust propulsion system[J]. Journal of Guidance, Control, and Dynamics, 2015, 30(2):419-426. [12] 孙冲, 袁建平, 方群, 等. 采用虚拟引力场的太阳帆/电推进混合推力机动轨道设计[J]. 西北工业大学学报, 2018, 36(4):618-626. SUN C, YUAN J P, FANG Q, et al. Hybrid low thrust propulsion trajectory design and optimization using virtual gravity,method[J]. Journal of Northwestern Polytechnical University, 2018, 36(4):618-626(in Chinese). [13] 张楷田. 两类非开普勒轨道的动力学与控制研究[D]. 合肥:中国科学技术大学, 2016:1-6. ZHANG K T. Dynamics and control of two types of the non-keplerian orbits[D]. Hefei:University of Science and Technology of China, 2016:1-6(in Chinese). [14] FORWARD R L. Light-levitated geostationary cylindrical orbits[J]. Journal of the Astronautical Sciences, 1981, 29(1):73-80. [15] MCINNES C R, COLIN R. Passive control of displaced solar sail orbits[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):975-982. [16] GONG S P, LI J F, BAOYIN H X. Passive stability design for solar sail on displaced orbits[J]. Journal of Spacecraft and Rockets, 2007, 44(5):1071-1080. [17] BOOKLESS J, MCINNES C R. Dynamics and control of displaced periodic orbits using solar-sail propulsion[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3):527-537. [18] 钱航, 郑建华, 于锡峥, 等. 太阳帆航天器悬浮轨道动力学与控制[J]. 空间科学学报, 2013, 33(4):458-464. QIAN H, ZHENG J H, YU X Z, et al. Dynamics and control of displaced orbits for solar sail spacecraft[J].Chinese Journal of Space Science, 2013, 33(4):458-464(in Chinese). [19] 张楷田, 楼张鹏, 王永, 等. 混合小推力航天器日心悬浮轨道保持控制[J]. 航空学报, 2015, 36(12):3910-3918. ZHANG K T, LOU Z P, WANG Y, et al. Station-keeping control of spacecraft using hybrid low-thrust propulsion in heliocentric displaced orbits[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3910-3918(in Chinese). [20] 曾祥远. 深空探测太阳帆航天器新型轨道设计[D]. 北京:清华大学, 2013:11-12. ZENG X Y. Solar sail spacecraft novel trajectory design in deep space exploration[D]. Beijing:Tsinghua University, 2013:11-12(in Chinese). [21] 刘林, 侯锡云. 深空探测器轨道力学[M]. 北京:电子工业出版社, 2012:1-13. LIU L, HOU X Y. Dynamics in deep space exploration[M]. Beijing:Publishing House of Electronics Industry,2012:1-13(in Chinese). [22] SMITH S W, SONG H, BAKER J R, et al. Flexible models for solar sail control[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, VA:AIAA, 2005. [23] PENG H, ZHAO J, WU Z, et al. Optimal periodic controller for formation flying on libration point orbits[J]. Acta Astronautica, 2011, 69(7):537-550. [24] KULKARNI J E, CAMPBELL M E, DULLERUD G E. Stabilization of spacecraft flight in halo orbits:An H∞ approach[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3):572-578. [25] 王晓晖, 李爽. 考虑动态不确定因素的深空探测器任务规划[J]. 中国空间科学技术, 2016, 36(6):29-37. WANG X H, LI S. A missionplanning method for deep space explorer considering dynamic uncertainties[J]. Chinese Space Science and Technology, 2016, 36(6):29-37(in Chinese). [26] POLYAKOV A, FRIDMAN L. Stability notions and Lyapunov functions for sliding mode control systems[J]. Journal of the Franklin Institute, 2014, 351(4):1831-1865. [27] SESHAGIRI S, KHALIL H K. Robust output feedbackregulation of minimum-phase nonlinear systems using conditional integrators[J]. Automatica, 2005, 41(1):43-54. [28] 李鹏, 马建军, 李文强, 等. 一类不确定非线性系统的改进积分型滑模控制[J]. 控制与决策, 2009, 24(10):1463-1466. LI P, MA J J, LI W Q, et al. Improved integral sliding mode control for a class of nonlinear uncertain systems[J]. Control and Decision,2009, 24(10):1463-1466(in Chinese). [29] FONOD R, KROKAVEC D. Actuator fault estimation using neuro-sliding mode observers[C]//IEEE International Conference on Intelligent Engineering Systems. Piscataway, NJ:IEEE Press, 2012. [30] SANNER R M, SLOTINE J J E. Gaussian networks for direct adaptive control[J]. IEEE Transaction on Neural Network, 1992, 3(6):837-863. [31] 张合新, 范金锁, 孟飞, 等. 一种新型滑模控制双幂次趋近律[J]. 控制与决策, 2013, 28(2):289-293. ZHANG H X, FAN J S, MENG F, et al. A new double power reaching law for sliding mode control[J]. Control and Decision, 2013, 28(2):289-293(in Chinese). [32] TAO G. Adaptive control design and analysis[M]. New York:Wiley-IEEE Press, 2003:80. [33] XU H J, MIRMIRANI M D, IOANNOU P A. Adaptive sliding mode control design for a hypersonic flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):829-838. [34] SCHMIDT G R, PATTERSON M J, BENSON S W. The NASA evolutionary xenon thruster (NEXT):The next step for U.S. deep space propulsion[C]//59th International Astronautical Congress, 2008. |