Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (16): 427914-427914.doi: 10.7527/S1000-6893.2022.27914
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
Feiyan GUO1(), Jianhua LIU2, Qingdong XIAO3, Shihong XIAO3, Zhongqi WANG4
Received:
2022-08-10
Revised:
2022-08-30
Accepted:
2022-09-19
Online:
2023-08-25
Published:
2022-10-26
Contact:
Feiyan GUO
E-mail:2009200890@mail.nwpu.edu.cn
Supported by:
CLC Number:
Feiyan GUO, Jianhua LIU, Qingdong XIAO, Shihong XIAO, Zhongqi WANG. Monitoring and evaluation of working condition and adaptive control technology for digital assembly tooling[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 427914-427914.
Table 1
Geometric and physical quantity perception type related to digital assembly tooling
序号 | 属性 | 含义 | 类型 | 单位 | 备注 |
---|---|---|---|---|---|
1 | DEVICE_NET_ID | 工控网等网络ID | STRING | ||
2 | DEVICE_ ID | 设备ID | STRING | ||
3 | DEVICE_CODE | 设备编码 | STRING | ||
4 | DEVICE_NAME | 设备名称 | STRING | ||
5 | DEVICE_TIME | 更新时间 | STRUCT | ||
6 | ITEM01-01 | 运行状态 | INT | 0:未知状态;1:待运行;2:运行;3:故障;4:急停; | |
7 | ITEM01-01 | 运行状态描述 | STRING | 如果故障状态,必须在ITEM2中给出故障描述。 | |
8 | ITEM01-02 | 控制柜上电反馈信号 | BOOL | ||
9 | ITEM102-01 | X轴位置 | REAL | mm | |
10 | ITEM103-01 | Y轴位置 | REAL | mm | |
11 | ITEM104-01 | Z轴位置 | REAL | mm | |
12 | ITEM102-02 | X向承载力 | REAL | kg | |
13 | ITEM103-02 | Y向承载力 | REAL | kg | |
14 | ITEM104-02 | Z向承载力 | REAL | kg | |
15 | ITEM105-01 | 定位执行末端是否锁紧 | INT | 0:表示解锁;1:表示锁紧;2:表示不防逃逸。 | |
16 | ITEM102-03 | X轴抱闸反馈信号 | BOOL | ||
17 | ITEM103-03 | Y轴抱闸反馈信号 | BOOL | ||
18 | ITEM104-03 | Z轴抱闸反馈信号 | BOOL | ||
19 | ITEM102-04 | X轴电机状态反馈信号 | BOOL | ||
20 | ITEM103-04 | Y轴电机状态反馈信号 | BOOL | ||
21 | ITEM104-04 | Z轴电机状态反馈信号 | BOOL | ||
22 | ITEM102-05 | X轴节点状态反馈信号 | BOOL | ||
23 | ITEM103-05 | Y轴节点状态反馈信号 | BOOL | ||
24 | ITEM104-05 | Z轴节点状态反馈信号 | BOOL |
Table 2
Position data of POGO locators under tooling axis system
POGO柱 | X坐标/mm | Y坐标/mm | Z坐标/mm |
---|---|---|---|
箱体1POGO1 | 104.327 | 150 | -52.143 5 |
箱体1POGO2 | 104.327 | 1 250 | -52.143 5 |
箱体1POGO3 | 104.327 | 2 350 | -52.143 5 |
箱体1POGO4 | 104.327 | 3 450 | -52.143 5 |
箱体2POGO1 | 504.327 | 150 | -134.457 |
箱体2POGO2 | 504.327 | 1 250 | -134.457 |
箱体2POGO3 | 504.327 | 2 350 | -134.457 |
箱体2POGO4 | 504.327 | 3 450 | -134.457 |
箱体3POGO1 | 904.327 | 150 | -134.457 |
箱体3POGO2 | 904.327 | 1 250 | -134.457 |
箱体3POGO3 | 904.327 | 2 350 | -134.457 |
箱体3POGO4 | 904.327 | 3 450 | -134.457 |
箱体4POGO1 | 1 304.33 | 150 | -52.143 5 |
箱体4POGO2 | 1 304.33 | 1 250 | -52.143 5 |
箱体4POGO3 | 1 304.33 | 2 350 | -52.143 5 |
箱体4POGO4 | 1 304.33 | 3 450 | -52.143 5 |
1 | 肖庆东, 张学睿, 郭飞燕, 等. 飞机装配质量主动实时控制技术研究现状与发展趋势[J]. 航空制造技术, 2021,64(20): 22-35. |
XIAO Q D, ZHANG X R, GUO F Y, et al. Research status and development trends of active real-time control of aircraft assembly quality [J]. Aeronautical Manufacturing Technology, 2021, 64(20): 22-35 (in Chinese). | |
2 | MILLAR A, KIHLMAN H. Reconfigurable flexible tooling for aerospace wing assembly, 2009-01-3243[R]. Warrendale: SAE, 2009. |
3 | MUNK C, NELSON P. Determinant wing assembly: EP97917567.6 [P]. 2005-08-10. |
4 | MUNK C, NELSON P. Determinant spar assembly: US09155236 [P]. 2001-01--09. |
5 | WHITEHOUSE J, WASH G. Positioning system for supporting structural components during assembly: US05659939A [P]. 1997-08-26. |
6 | Lockheed Matin. . |
7 | RAMIREZ J, WOLLNACK J. Flexible automated assembly systems for large CFRP–structures [J]. Procedia Technology, 2014, 15: 447-455. |
8 | JEFFERSON T, BENARDOS P, RATCHEV S. Reconfigurable assembly system design methodology: A wing assembly case study [J]. SAE International Journal of Materials and Manufacturing, 2015, 9(1): 31-48. |
9 | MULLER R, ESSER M, VETTE M. Reconfigurable handling systems as an enabler for large components in mass customized production [J]. Journal of Intelligent Manufacturing, 2013, 24(5): 977-996. |
10 | ARISTA R, FALGARONE H. Flexible best fit assembly of large aircraft components, airbus A350XWB case study[C]∥Product Lifecycle Management and the Industry of the Future, 2017. |
11 | 郭洪杰, 康晓峰, 王亮, 等. 飞机部件装配数字化柔性工装技术研究[J]. 航空制造技术,2011(22): 94-97. |
GUO H J, KANG X F, WANG L, et al. Research on flexible tooling technology for digital assembly of aircraft fuselage [J]. Aeronautical Manufacturing Technology, 2011(22): 94-97 (in Chinese). | |
12 | 郑联语, 刘清军, 张宏博, 等. 基于综合工装的盒式连接装配型架快速配置方法[J]. 计算机集成制造系统, 2014, 20(10): 2426-2437. |
ZHENG L Y, LIU Q J, ZHANG H B, et al. Rapid configuration for box-joint assembly jigs based on composite tooling [J]. Computer Integrated Manufacturing Systems, 2014, 20(10): 2426-2437 (in Chinese). | |
13 | 张宏博, 郑联语, 刘新玉, 等. 基于信息物理系统的可重构装配型架智能装调技术[J]. 计算机集成制造系统, 2019, 25(11): 2693-2709. |
ZHANG H B, ZHENG L Y, LIU X Y, et al. Cyber-physical system based smart installing technology for reconfigurable assembly jig [J]. Computer Integrated Manufacturing Systems, 2019, 25(11): 2693-2709 (in Chinese). | |
14 | 张宏博, 郑联语, 王艺玮. 基于模块服役状态的盒式连接可重构型架稳定性评估方法[J]. 航空学报, 2021, 42(9): 424180. |
ZHANG H B, ZHENG L Y, WANG Y W. Stability evaluation method for box-joint reconfigurable jig based on module service state [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 424180 (in Chinese). | |
15 | 姜昕彤. 飞机装配过程中工装应变监测及预测技术研究[D]. 大连: 大连理工大学, 2020. |
JIANG X T. Research on tooling strain monitoring and forecasting technology during aircraft assembly [D]. Dalian: Dalian University of Technology, 2020 (in Chinese). | |
16 | 刘坤. 飞机装配中工装定位器关键几何特征估算方法研究[D]. 大连: 大连理工大学, 2021. |
LIU K. Research on estimation method for key geometric features of tooling positioner in aircraft assembly [D]. Dalian: Dalian University of Technology, 2021 (in Chinese). | |
17 | 梁冰. 航空薄壁件装配中多尺度几何特征复合测量方法研究[D]. 大连: 大连理工大学, 2021. |
LIANG B. Hybrid measurement method for multi-scale geometric feature in aviation thin-walled parts assembly process [D]. Dalian: Dalian University of Technology, 2021 (in Chinese). | |
18 | 胡玉龙, 王仲奇, 李西宁, 等. 基于ELM的飞机数字化装配定位运动模型[J]. 航空学报, 2016, 37(4): 297-306. |
HU Y L, WANG Z Q, LI X N, et al. Kinematic model of digital assembly location for airplane based on ELM [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 297-306 (in Chinese). | |
19 | 姜珊, 王仲奇, 夏松, 等. 飞机柔性工装数字孪生几何模型构建方法[J]. 航空制造技术, 2022, 65(12): 86-91, 111. |
JIANG S, WANG Z Q, XIA S, et al. Construction method of digital twin geometry model for aircraft flexible tooling [J]. Aeronautical Manufacturing Technology, 2022, 65(12): 86-91, 111 (in Chinese). | |
20 | 盖宇春. 飞机数字化装配调姿工装系统设计[D]. 杭州: 浙江大学, 2013. |
GAI Y C. The system design of pose adjustment tooling for aircraft digital assembly [D]. Hangzhou: Zhejiang University, 2013 (in Chinese). | |
21 | 窦亚冬. 飞机装配间隙协调及数字化加垫补偿技术研究[D]. 杭州: 浙江大学, 2018. |
DOU Y D. Study on gap coordination and shim compensation in aircraft assembly [D]. Hangzhou: Zhejiang University, 2018 (in Chinese). | |
22 | 赵丹. 卧式双机联合自动钻铆系统空间定位精度保障技术研究[D]. 杭州: 浙江大学, 2018. |
ZHAO D. Research on technology of spatial precise positioning with dual-machine cooperative drilling and riveting system [D]. Hangzhou: Zhejiang University, 2018 (in Chinese). | |
23 | GUO F, WANG Z, LIU J, et al. Locating method and motion stroke design of flexible assembly tooling for multiple aircraft components [J]. International Journal of Advanced Manufacturing Technology, 2020, 107(1-2): 549-571. |
24 | GUO F, LIU J, WANG Z, et al. Positioning error guarantee method with two-stage compensation strategy for aircraft flexible assembly tooling [J]. Journal of Manufacturing Systems, 2020, 55(4): 285-301. |
25 | 宋学官, 来孝楠, 何西旺, 等. 重大装备形性一体化数字孪生关键技术[J]. 机械工程学报, 2022, 58(10): 298-325 |
SONG X G, LAI X N, HE X W, et al. Key technologies of shape-performance integrated digital twin for major equipment [J]. Journal of Mechanical Engineering, 2022, 58(10): 298-325 (in Chinese). | |
26 | GUO F, ZOU F, LIU J, et al. Assembly error propagation modeling and coordination error chain construction for aircraft [J]. Assembly Automation, 2019, 39(2): 308-322. |
27 | 张书生, 陈俐. 一种横向驱动装置: CN 109590784 B [P]. 2020-11-10. |
ZHANG S S, CHEN L. A transverse drive device: CN 109590784 B [P]. 2020-11-10 (in Chinese). |
[1] | Fengying ZHENG, Zhimin SHEN, Yaqin LI, Kaizhao XU, Xinhua WANG. Gain adaptive multi-mode switching control for coaxial high-speed helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529088-529088. |
[2] | Yuqing QIU, Yan LI, Jinxi LANG, Yuxian LIU, Zhong WANG. Robust adaptive attitude control of high-speed helicopters in transition mode [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529927-529927. |
[3] | Kai NING, Baolin WU. Event-triggered-based orbit maintenance control for spacecraft subsatellite point control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329412-329412. |
[4] | Leyan FANG, Han MENG, Mingzhe HOU. Iterative learning sliding mode control with precise parameter estimation and its application [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628889-628889. |
[5] | Guangquan DUAN, Guoping LIU. Adaptive prescribed control of position and attitude of combined spacecraft based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628837-628837. |
[6] | Xiaoyun SUN, Shufan WU, Qiang SHEN. LMI-based output tracking robust drag-free control with model reference adaptive scheme [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727654-727654. |
[7] | Runchang HU, Zian WANG, Yongliang CHEN, Dapeng ZHOU, Dapeng YANG, Zheng GONG. Stability augmentation control of thrust-vectored V/STOL aircraft based on L1 adaptive control [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727642-727642. |
[8] | Chenyang LIU, Dawei WU, Yize GUO, Xinsai LV, Jiani ZHOU, Shuyi SHAO. Robust adaptive attitude control of quadrotor with uncertain strong coupling [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727645-727645. |
[9] | Yajie MA, Juan WANG, Bin JIANG, Jianye GONG. A fault⁃tolerant control scheme for UAVs-UGVs formation systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327216-327216. |
[10] | Xiaofu BA, Hongqian XUE, Xining LI. Modeling and test of positioning accuracy for positioner with 3-axis randomly position connected in series [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 428469-428469. |
[11] | YANG Xiaowei, GE Yaowen, DENG Wenxiang, YAO Jianyong, ZHOU Ning. Active fault-tolerant control for hydraulic actuating cylinders of aeroengine guide vane control mechanisms [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625464-625464. |
[12] | ZHANG Jiabo, LIU Haitao, YUE Yi, YANG Jizhi, YI Maobin, WANG Yunpeng, ROU Lei. Mobile hybrid robot processing technology for large satellites [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 625731-625731. |
[13] | DONG Song, ZHENG Kan, MENG Dan, LIAO Wenhe, SUN Lianjun. Robotic drilling of large complex components: A review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 627133-627133. |
[14] | WU Baohai, ZHANG Yang, ZHENG Zhiyang, ZHANG Ying, ZHANG Siqi. Review and prospects of feedrate optimization in CNC machining [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525467-525467. |
[15] | SHI Zhongjiao, ZHU Huajie, ZHAO Liangyu, LIU Zhijie. Adaptive decoupling control for a class of spinning rockets considering actuator dynamics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 325068-325068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341