ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2019, Vol. 40 ›› Issue (1): 522642-522642.doi: 10.7527/S1000-6893.2018.22642
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
BAI Junqiang, LEI Ruiwu, YANG Tihao, WANG Hui, HE Xiaolong, QIU Yasong
Received:
2018-09-03
Revised:
2018-09-26
Online:
2019-01-15
Published:
2018-10-31
Supported by:
CLC Number:
BAI Junqiang, LEI Ruiwu, YANG Tihao, WANG Hui, HE Xiaolong, QIU Yasong. Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522642-522642.
[1] REICHMUTH J, BERSTER P. Past and future developments of the global air traffic[M]//Biokerosene. Berlin, Heidelberg:Springer, 2018:13-31. [2] LEE J J, LUKACHKO S P, WAITZ I A, et al. Historical and future trends in aircraft performance, cost, and emissions[J]. Annual Review of Energy and the Environment, 2001, 26(1):167-200. [3] BIEGER T, WITTMER A. Air transport and tourism-Perspectives and challenges for destinations, airlines and governments[J]. Journal of Air Transport Management, 2006, 12(1):40-46. [4] SCHMOLLGRUBER P, BARTOLI N, BEDOUET J, et al. Improvement of the aircraft design process for air traffic management evaluations[C]//2018 AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2018. [5] 朱自强, 吴宗成. 现代飞机设计空气动力学[M]. 北京:北京航空航天大学出版社, 2005. ZHU Z Q, WU Z C. Aerodynamics design of modern aircraft[M]. Beijing:Beihang University Press, 2005(in Chinese). [6] WAGNER M, NORRIS G. Boeing 787 dreamliner[M]. New York:Zenith Press, 2009. [7] MARSH G. Airbus takes on Boeing with reinforced plastic A350 XWB[J]. Reinforced Plastics, 2007, 51(11):26-29. [8] PAUL O, HOWARD S. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82:1-23. [9] CAVALLARO R, DEMASI L. Challenges, ideas, and innovations of joined-wing configurations:A concept from the past, an opportunity for the future[J]. Progress in Aerospace Sciences, 2016, 87:1-93. [10] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA Langley Research Center, 2014. [11] SKINNER S N, ZARE B H. State-of-the-art in aerodynamic shape optimisation methods[J]. Applied Soft Computing, 2018, 62(3):373-391. [12] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). [13] 赵童, 张宇飞, 陈海昕, 等. 面向三维机翼性能的超临界翼型优化设计方法[J]. 中国科学, 2015, 45(10):89-101. ZHAO T, ZHANG Y F, CHEN H X, et al. Aerodynamic optimization method of supercritical airfoil geared to the performance of swept and tapered wing[J]. Scientia Sinica Technologica, 2015, 45(10):89-101(in Chinese). [14] 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1):37-45. HUANG J T, GAO Z H, BAI J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):37-45(in Chinese). [15] PETER J E V, DWIGHT R P. Numerical sensitivity analysis for aerodynamic optimization:A survey of approaches[J]. Computers & Fluids, 2010, 39(3):373-391. [16] NOCEDAL J, WRIGHT S. Numerical optimization[M]. New York:Springer, 2006. [17] BARCLAY A. SQP methods for large-scale optimization[D]. San Diego, CA:University of California, 1999. [18] BACHMANN S, BOTTMER C, SCHRÖDER J, et al. ADIC:An extensible automatic differentiation tool for ANSI-C[M]. New York:John Wiley & Sons, Inc., 1997. [19] BISCHOF C, KHADEMI P, MAUER A, et al. Adifor 2.0:Automatic differentiation of Fortran 77 programs[J]. IEEE Computational Science & Engineering, 2002, 3(3):18-32. [20] BENDTSEN C, STAUNING O. FADBAD:A flexible C++ package for automatic differentiation[R]. Lyngby:Technical University of Denmark, 1996. [21] UTKE J, NAUMANN U, FAGAN M, et al. OpenAD/F:A modular open-source tool for automatic differentiation of fortran codes[J]. ACM Transactions on Mathematical Software, 2008, 34(4):1-36. [22] HASCOЁT L. Tapenade:A tool for automatic differentiation of programs[C]//Proceedings of 4th European Congress on Computational Methods, 2004. [23] GOLDFARB D, TOINT P L. Optimal estimation of Jacobian and Hessian matrices that arise in finite difference calculations[J]. Mathematics of Computation, 1984, 43(167):69-88. [24] ZINGG D, LEUNG T, DIOSADY L, et al. Improvements to a Newton-Krylov adjoint algorithm for aerodynamic optimization[C]//17th AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2005. [25] BURDYSHAW C E, ANDERSON W K. A general and extensible unstructured mesh adjoint method[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2(10):401-413. [26] GILES M B, DUTA M C, MUACUTE J D, et al. Algorithm developments for discrete adjoint methods[J]. AIAA Journal, 2003, 41(2):198-205. [27] CORRAL R, GISBERT F. Non axisymmetric end-wall design using an adjoint Navier-Stokes solver[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences. Reston, VA:AIAA, 2005. [28] KIM H J, KIM C, RHO O H, et al. Aerodynamic sensitivity analysis for Navier-Stokes equations[J]. Journal of the Korean Society for Industrial & Applied Mathematics, 1999, 3(2):161-171. [29] LYU Z. High-fidelity aerodynamic design optimization of aircraft configurations[D]. Michigan:University of Michigan, 2014. [30] LYU Z, KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal, 2015, 53(4):968-985. [31] CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6):1342-1354. [32] YU Y, LYU Z, XU Z, et al. On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization[J]. Aerospace Science and Technology, 2018, 75:183-199. [33] BONS N, HE X, MADER C A, et al. Multimodality in aerodynamic wing design optimization[C]//35th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2017. [34] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):233-260. [35] ELDIN I S, CARRIER G, MOUTON S. Discrete adjoint method in elsA (Part 2):Application to aerodynamic design optimisation[C]//Proceedings of the 7th ONERA-DLR Aerospace Symposium (ODAS), 2006. [36] DUMONT A, LE PAPE A, PETER J, et al. Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the Reynolds-averaged Navier-Stokes equations[J]. Journal of the American Helicopter Society, 2011, 56(3):1-11. [37] MIALON B, FOL T, BONNAUD C. Aerodynamic optimization of subsonic flying wing configurations[C]//20th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2002. [38] CARRIER G, DESTARAC D, DUMONT A, et al. Gradient-based aerodynamic optimization with the elsA software:AIAA-2014-0568[R]. Reston, VA:AIAA, 2014. [39] SCHWAMBORN D, GERHOLD T, HEINRICH R. The DLR TAU-code:Recent applications in research and industry[C]//ECCOMAS CFD 2006:Proceedings of the European Conference on Computational Fluid Dynamics, 2006. [40] BREZILLON J, BRODERSEN O, DWIGHT R, et al. Development and application of a flexible and efficient environment for aerodynamic shape optimisation[C]//Proceedings of the ONERA-DLR Aerospace Symposium (ODAS), 2006. [41] BREZILLON J, DWIGHT R P. Aerodynamic shape optimization using the discrete adjoint of the Navier-Stokes equations:Applications towards complex 3D configurations[C]//Proceedings of the CEAS/KATnet Conference on Key Aerodynamic Technologies, 2009. [42] WIDHALM M, RONZHEIMER A, HEPPERLE M. Comparison between gradient-free and adjoint based aerodynamic optimization of a flying wing transport aircraft in the preliminary design[C]//AIAA 25th Applied Aerodynamics Conference. Reston, VA:AIAA, 2007. [43] NIELSEN E J, ANDERSON W K. Recent improvements in aerodynamic design optimization on unstructured meshes[J]. AIAA Journal, 2002, 40(6):1155-1163. [44] NIELSEN E J. Aerodynamic design sensitivities on an unstructured mesh using the Navier-Stokes equations and a discrete adjoint formulation[D]. Blacksburg, VA:Polytechnic Institute and State University, 1998. [45] NIELSEN E J, DISKIN B, YAMALEEV N K. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids[J]. AIAA Journal, 2010, 48(6):1195-1206. [46] PARK M A. Low boom configuration analysis with FUN3D adjoint simulation framework:AIAA-2011-3337[R]. Reston, VA:AIAA, 2011. [47] PALACIOS F, COLONNO M R, ARANAKE A C, et al. Stanford University Unstructured (SU2):An open-source integrated computational environment for multi-physics simulation and design:AIAA-2013-0287[R]. Reston, VA:AIAA, 2013. [48] PALACIOS F, ECONOMON T D, ARANAKE A C, et al. Stanford University Unstructured (SU2):Open-source analysis and design technology for turbulent flows:AIAA-2014-0243[R]. Reston, VA:AIAA, 2014. [49] BUENO A, CASTRO C, PALACIOS F, et al. Continuous adjoint approach for the Spalart-Allmaras model in aerodynamic optimization[J]. AIAA Journal, 2012, 50(3):631-646. [50] 杨旭东, 乔志德. 基于控制理论的气动优化设计技术研究[D]. 西安:西北工业大学, 2002. YANG X D, QIAO Z D. Aerodynamic optimization method research based on control theory[D]. Xi'an:Northwestern Polytechnical University, 2002(in Chinese). [51] 熊俊涛, 乔志德, 杨旭东, 等. 基于黏性伴随方法的跨声速机翼气动优化设计[J]. 航空学报, 2007, 28(2):281-285. XIONG J T, QIAO Z D, YANG X D, et al. Optimum aerodynamic design of transonic wing based on viscous adjoint method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):281-285(in Chinese). [52] 杨旭东, 乔志德. 基于共轭方程法的跨声速机翼气动力优化设计[J]. 航空学报, 2003, 24(1):1-5. YANG X D, QIAO Z D. Optimum aerodynamic design of transonic wing based on adjoint equations method[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1):1-5(in Chinese). [53] 杨旭东, 乔志德, 朱兵. 基于控制理论和NS方程的气动设计方法研究[J]. 空气动力学学报, 2005, 23(1):46-52. YANG X D, QIAO Z D, ZHU B. Aerodynamic design method based on control theory and NS equations[J]. Acta Aerodynamica Sinica, 2005, 23(1):46-52(in Chinese). [54] 左英桃, 高正红, 何俊. 基于NS方程和离散共轭方法的气动外形设计[J]. 空气动力学学报, 2010, 28(5):509-512. ZUO Y T, GAO Z H, HE J. Aerodynamic design method based on NS equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica, 2010, 28(5):509-512(in Chinese). [55] 左英桃, 傅林, 高正红, 等. 机翼-机身-短舱-挂架外形气动优化设计方法[J]. 航空动力学报, 2013, 28(9):2009-2015. ZUO Y T, FU L, GAO Z H. Aerodynamic optimization design of wing-body-nacelle-pylon configuration[J]. Journal of Aerospace Power, 2013, 28(9):2009-2015(in Chinese). [56] 左英桃, 苏伟, 高正红, 等. 基于离散共轭方法的高超声速导弹气动外形优化设计[J]. 计算力学学报, 2012, 29(2):284-289. ZUO Y T, SU W, GAO Z H, et al. Aerodynamic configuration optimization design of hypersonic missile based on discrete adjoint method[J]. Chinese Journal of Computational Mechanics, 2012, 29(2):284-289(in Chinese). [57] 唐智礼, 黄明恪. 基于控制理论的Euler方程翼型减阻优化设计[J]. 空气动力学学报, 2001, 19(3):262-270. TANG Z L, HUANG M K. Control theory based airfoil design using Euler equations[J]. Acta Aerodynamica Sinica, 2001, 19(3):262-270(in Chinese). [58] 唐智礼. 应用控制理论的气动优化设计方法研究[D]. 南京:南京航空航天大学, 2000. TANG Z L. Aerodynamic optimization research using control theory[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2000(in Chinese). [59] 徐兆可, 夏健, 高宜胜. 基于三维非结构网格的连续伴随优化方法[J]. 南京航空航天大学学报, 2015, 47(1):145-152. XU Z K, XIA J, GAO Y S. Continuous adjoint approach to aerodynamic optimization on 3D unstructured grids[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47(1):145-152(in Chinese). [60] 杨洋, 欧阳绍修, 刘学强, 等. 基于伴随算子的跨声速机翼气动优化设计[J]. 南京航空航天大学学报, 2013, 45(3):347-352. YANG Y, OUYANG S X, LIU X Q, et al. Aerodynamic optimization of transonic wing using discrete adjoint operator[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(3):347-352(in Chinese). [61] 李彬, 邓有奇, 唐静, 等. 基于三维非结构混合网格的离散伴随优化方法[J]. 航空学报, 2014, 35(3):674-686. LI B, DENG Y Q, TANG J, et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):674-686(in Chinese). [62] 黄勇, 陈作斌, 刘刚. 基于伴随方程的翼型数值优化设计方法研究[J]. 空气动力学学报, 1999, 17(4):413-422. HUANG Y, CHEN Z B, LIU G. An investigation of aerodynamic optimization design for airfoil based on adjoint formulation[J]. Acta Aerodynamica Sinica, 1999, 17(4):413-422(in Chinese). [63] 吴文华, 陶洋, 陈德华, 等. 基于伴随算子的气动布局优化技术及其在大飞机机翼减阻中的应用[J]. 航空动力学报, 2011, 26(7):1583-1589. WU W H, TAO Y, CHEN D H, et al. Wing optimization of large airplane by adjoint method[J]. Journal of Aerospace Power, 2011, 26(7):1583-1589(in Chinese). [64] 吴文华, 范召林, 陈德华, 等. 基于伴随算子的大飞机气动布局精细优化设计[J]. 空气动力学学报, 2013, 30(6):719-724. WU W H, FAN Z L, CHEN D H, et al. Adjoint based on high precise aerodynamic shape optimization for transonic civil aircraft[J]. Acta Aerodynamica Sinica, 2013, 30(6):719-724(in Chinese). [65] 黄江涛, 高正红, 余婧, 等. 大型民用飞机气动外形典型综合设计方法分析[J]. 航空学报, 2019, 40(2):122369. HUANG J T, GAO Z H, YU J. et al. The analysis of a typical integrated design method for large civil aircraft aero-dynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):122369(in Chinese). [66] 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4):554-562. HUANG J T, LIU G, ZHOU Z, et al. Investigation of gra-dient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4):554-562(in Chinese). [67] 朱海涛, 白文. 基于非结构网格离散伴随方法的机翼多点多约束无粘优化设计[J]. 航空科学技术, 2016, 27(10):20-26. ZHU H T,BAI W. Discrete adjoint method on unstructured mesh for constrained multipoint wing design[J]. Aeronautical Science and Technology, 2016, 27(10):20-26(in Chinese). [68] 刘峰博, 郝海兵, 李典, 等. 离散伴随方法在气动优化设计中的应用[J]. 航空计算技术, 2017, 47(2):33-36. LIU F B, HAO H B, LI D, et al. Application of discrete adjoint method in aerodynamic shape optimization design[J]. Aeronautical Computing Technique, 2017, 47(2):33-36(in Chinese). [69] REUTHER J, JAMESON A. Supersonic wing and wing-body shape optimization using an adjoint formulation[M]. Washington, D.C.:NASA Ames Research Center, 1995. [70] JAMESON A, FARMER J, MARTINELLI L, et al. Aerodynamic shape optimization of complex aircraft configurations via an adjoint formulation[M]. Washington, D.C.:NASA Ames Research Center, 1996. [71] ANDERSON W K, VENKATAKRISHNAN V. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[J]. Computers & Fluids, 1999, 28(4):443-480. [72] NIELSEN E J, ANDERSON W K. Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations[J]. AIAA Journal, 1999, 37(11):1411-1419. [73] MAVRIPLIS D J. Discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes[J]. AIAA Journal, 2007, 45(4):741-750. [74] MAVRIPLIS D J. Multigrid solution of the discrete adjoint for optimization problems on unstructured meshes[J]. AIAA Journal, 2006, 44(1):42-50. [75] OSUSKY L, ZINGG D W. Application of an efficient Newton-Krylov algorithm for aerodynamic shape optimization based on the Reynolds-averaged Navier-Stokes equations[C]//21st AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2013. [76] TELIDETZKI K, OSUSKY L, ZINGG D W. Application of jetstream to a suite of aerodynamic shape optimization problems[C]//52nd AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2014. [77] KENWAY G K, MARTINS J. Aerodynamic shape optimization of the CRM configuration including buffet-onset conditions[C]//54th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2016. [78] 陈颂, 白俊强, 史亚云, 等. 民用客机翼/机身/平尾构型气动外形优化设计方法研究[J]. 航空学报, 2015, 36(10):3195-3207. CHEN S, BAI J Q, SHI Y Y, et al. Aerodynamic shape optimization design of civil jet wing-body-tail configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3195-3207(in Chinese). [79] 李立, 白俊强, 郭同彪, 等. 考虑放宽静稳定度的民用客机气动优化设计[J]. 航空学报, 2017, 38(9):203-216. LI L, BAI J Q, GUO T B, et al. Aerodynamic optimization design for civil aircraft considering relaxed static stability[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):203-216(in Chinese). [80] BONS N, MADER C A, MARTINS J, et al. High-fidelity aerodynamic shape optimization of a full configuration regional jet[C]//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2018. [81] ALAN L M. A discrete Navier-Stokes adjoint method for aerodynamic optimisation of blended wing-body configurations[D]. Bedfordshire:Cranfield University, 2002. [82] WONG W S, LE M A, QIN N. Parallel adjoint-based optimisation of a blended wing body aircraft with shock control bumps[J]. Aeronautical Journal, 2007, 111(1117):165-174. [83] MÉHEUT M, CARRIER G. Aerodynamic optimization of a blended wing body using the adjoint method[C]//Evolutionary and Deterministic Methods for Design, Optimization and Control, 2011. [84] REIST T A, ZINGG D W. Aerodynamic shape optimization of a blended-wing-body regional transport for a short range mission[C]//AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2013. [85] LYU Z, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5):1604-1617. [86] GAGNON H, ZINGG D W. Geometry generation of complex unconventional aircraft with application to high-fidelity aerodynamic shape optimization[C]//AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2013. [87] GAGNON H, ZINGG D W. High-fidelity aerodynamic shape optimization of unconventional aircraft through axial deformation[C]//Aerospace Sciences Meeting, 2014. [88] IVALDI D, SECCO N R, CHEN S, et al. Aerodynamic shape optimization of a truss-braced-wing aircraft[C]//AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2015. [89] SECCO N R, MARTINS J. RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes[C]//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2018. [90] LEE B J, LIOU M S, KIM C. Optimizing a boundary-layer-ingestion offset inlet by discrete adjoint approach[J]. AIAA Journal, 2010, 48(9):2008-2016. [91] ORDAZ I, RALLABHANDI S K, NIELSEN E J, et al. Mitigation of engine inlet distortion through adjoint-based design[C]//35th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2017. [92] PIPERNI P, ABDO M, KAFYEKE F, et al. Preliminary aerostructural optimization of a large business jet[J]. Journal of Aircraft, 2007, 44(5):1422-1438. [93] MARTINS J R R A, ALONSO J J, REUTHER J J. High-fidelity aerostructural design optimization of a supersonic business jet[J]. Journal of Aircraft, 2004, 41(3):523-530. [94] POON N M K, MARTINS J R R A. An adaptive approach to constraint aggregation using adjoint sensitivity analysis[J]. Structural and Multidisciplinary Optimization, 2007, 34(1):61-73. [95] FAZZOLARI A. An aero-structure adjoint formulation for efficient multidisciplinary wing optimization[D]. Braunschweig:Technical University of Braunschweig, 2005. [96] MADER C, KENWAY G, MARTINS J. Toward high-fidelity aerostructural optimization using a coupled adjoint approach[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2008. [97] KENNEDY G, MARTINS J. A comparison of metallic and composite aircraft wings using aerostructural design optimization[C]//12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2012. [98] KENWAY G K W, KENNEDY G J, MARTINS J R R A. Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations[J]. AIAA Journal, 2014, 52(5):935-951. [99] LIEM R P, KENWAY G K W, MARTINS J R R A. Multimission aircraft fuel-burn minimization via multipoint aerostructural optimization[J]. AIAA Journal, 2015, 53(1):104-122. [100] BROOKS T R, KENNEDY G, MARTINS J. High-fidelity aerostructural optimization of a high aspect ratio tow-steered composite wing[C]//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2017. [101] BURDETTE D A. High-fidelity aerostructural design optimization of transport aircraft with continuous morphing trailing edge technology[D]. Michigan:University of Michigan, 2017. [102] ZHANG J Z. Exploratory high-fidelity aerostructural optimization using an efficient monolithic solution method[D]. Toronto:University of Toronto, 2017. [103] 杨体浩, 白俊强, 辛亮, 等. 考虑静气动弹性影响的客机机翼气动/结构一体化设计研究[J]. 空气动力学学报, 2017, 35(4):598-609. YANG T H, BAI J Q, XIN L, et al. Study on the aerodynamic/structural integration design of wing considering the influence of static aerodynamic elasticity[J]. Acta Aerodynamica Sinica, 2017, 35(4):598-609(in Chinese). [104] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25. [105] STANFORD B K, DUNNING P D. Optimal topology of aircraft rib and spar structures under aeroelastic loads[J]. Journal of Aircraft, 2015, 52(4):1298-1311. [106] STANFORD B, WIESEMAN C D, JUTTE C. Aeroelastic tailoring of transport wings including transonic flutter constraints[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2015. [107] JONSSON E, KENWAY G K, KENNEDY G, et al. Development of flutter vonstraints for high-fidelity aerostructural optimization[C]//35th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2017. [108] ZHANG Z, CHEN P C, YANG S, et al. Unsteady aerostructure coupled adjoint method for flutter suppression[J]. AIAA Journal, 2015, 53(8):2121-2129. [109] CHOI S, LEE K, POTSDAM M M, et al. Helicopter rotor design using a time-spectral and adjoint-based method[J]. Journal of Aircraft, 2014, 51(2):412-423. [110] MISHRA A, MAVRIPLIS D, SITARAMAN J. Time-dependent aeroelastic adjoint-based aerodynamic shape optimization of helicopter rotors in forward flight[J]. AIAA Journal, 2016, 54(12):3813-3827. [111] IM D K, CHOI S, MCCLURE J E, et al. Mapped Chebyshev pseudospectral method for unsteady flow analysis[J]. AIAA Journal, 2015, 53(12):3805-3820. [112] 杨体浩, 白俊强, 史亚云, 等. 适用于非周期流固耦合问题的时间谱方法[J]. 航空学报, 2018, 39(5):121654. YANG T H, BAI J Q, SHI Y Y, et al. Time spectral method for non-periodic fluid-structure coupling problems[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121654(in Chinese). |
[1] | Shusheng CHEN, Cong FENG, Zhaokang ZHANG, Ke ZHAO, Xinyang ZHANG, Zhenghong GAO. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629596-629596. |
[2] | Xiong HUANG, Shiru QU, Heng ZHANG, Xiantiao CHEN. Stall performance of high-lift configuration of large civil aircraft with slat de-icing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627077-627077. |
[3] | GAO Chang, LI Zhengzhou, HUANG Jiangtao, HE Yuanyuan, WU Yingchuan, LE Jialing, GUI Feng. High-accuracy aerodynamic optimization of hypersonic vehicles based on continuous adjoint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124490-124490. |
[4] | LIU Fengbo, JIANG Cheng, MA Tuliang, LIANG Yihua. Aerodynamic optimization design of large civil aircraft using pressure distribution inverse design method based on discrete adjoint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623372-623372. |
[5] | LUO Jiaqi, YANG Jing. Aerodynamic design optimization of a single low-speed compressor stage by an adjoint method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623368-623368. |
[6] | HUANG Jiangtao, LIU Gang, GAO Zhenghong, ZHOU Zhu, CHEN Zuobin, JIANG Xiong. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623404-623404. |
[7] | LI Runze, ZHANG Yufei, CHEN Haixin. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623409-623409. |
[8] | ZHANG Yizhi, CHENG Cheng, FAN Yitong, LI Gaohua, LI Weipeng. Data-driven correction of turbulence model with physics knowledge constrains in channel flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 123282-123282. |
[9] | LUO Jiaqi, CHEN Zeshuai, ZENG Xian. Robust aerodynamic design optimization of turbine cascades considering uncertainty of geometric design parameters [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(10): 123826-123826. |
[10] | HAN Zhonghua, ZHANG Yu, XU Chenzhou, WANG Kai, WU Mengmeng, ZHU Zhen, SONG Wenping. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522398-522398. |
[11] | TAN Weiwei, YAN Hong, NIE Zhijun, MA Tuliang, LIANG Yihua. Propulsion performance simulation of turbofan engine for large civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522428-522428. |
[12] | CHEN Yingchun, ZHANG Meihong, ZHANG Miao, MAO Jun, MAO Kun, WANG Qimin. Review of large civil aircraft aerodynamic design [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522759-522759. |
[13] | HE Tailong, CHEN Wanchun, ZHOU Hao. Power series solution for miss distance of higher-order linear proportional navigation guidance systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(11): 322241-322250. |
[14] | QIAN Guangping, LIU Peiqing, YANG Shipu, DANG Yabin. A Comprehensive Study on Wingtip Devices in Large Civil Aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, (4): 634-639. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341