[1] RENEAUX J. Overview on drag reduction technologies for civil transport aircraft[C]//European Congress on Computational Methods in Applied Sciences and Engineering, 2004. [2] ROTH G, CROSSLEY W. Commercial transport aircraft conceptual design using a genetic algorithm based approach[C]//7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, VA:AIAA, 1998. [3] 李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5):1-10. LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5):1-10(in Chinese). [4] 邓一菊, 段卓毅. 波音777增升装置气动设计研究综述[J]. 飞机工程, 2014(2):8-12. DENG Y J, DUAN Z Y. An overview of the Boeing 777 high lift aerodynamic design[J]. Aircraft Engineering, 2014(2):8-12(in Chinese). [5] OBERT E. Aerodynamic design of transport aircraft[M]. Amsterdam:IOS Press, 2009:1-42. [6] PIPERNI P, ABDO M, FAFYEKE F. The application of multi-disciplinary optimization technologies to the design of a business jet[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2004. [7] CLIFF S E, REUTHER J J, SAUNDERS D A, et al. Single-point and multipoint aerodynamic shape optimization of high-speed civil transport[J]. Journal of Aircraft, 2001, 38(6):997-1005. [8] YAO W, CHEN X, LUO W, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6):450-479. [9] 白俊强, 雷锐午, 杨体浩, 等. 基于伴随理论的大型客机气动优化设计研究进展[J]. 航空学报, 2019, 40(1):122642. BAI J Q, LEI R W, YANG T H, et al. The recent progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):122642(in Chinese). [10] OBAYASHI S, TAKANASHI S. Genetic optimization of target pressure distributions for inverse design methods[J]. AIAA Journal, 1996, 34(5):881-886. [11] BERCI M, TOROPOV V V, HEWSON R W, et al. Multidisciplinary multifidelity optimization of a flexible wing aero foil with reference to a small UAV[J]. Structural and Multidisciplinary Optimization, 2014, 50(4):683-699. [12] BUCKLEY H P, ZHOU B Y, ZINGG D W. Airfoil optimization using practical aerodynamic design requirements[J]. Journal of Aircraft, 2010, 47(5):1707-1719. [13] KUMAR A, KEANE A J, NAIR P B, et al. Robust design of compressor fan blades against erosion[J]. Journal of Mechanical Design, 2006, 128(4):864-873. [14] KIM H J, RHO O H. Aerodynamic design of transonic wings using the target pressure optimization approach[J]. Journal of Aircraft, 1998, 35(5):671-677. [15] GARABEDIAN P, MCFADDEN G. Design of supercritical swept wings[J]. AIAA Journal, 1982, 20(3):289-291. [16] JIN Y. Surrogate-assisted evolutionary computation:Recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1(2):61-70. [17] ZHANG Y F, CHEN H X. Computations of a twin-engine civil transporter using window embedment grid technology:AIAA-2008-0169[R]. Reston, VA:AIAA, 2008. [18] JOHNSON F T, TINOCO E N, YU N J. Thirty years of development and application of CFD at Boeing commercial airplanes, seattle[J]. Computers & Fluids, 2005, 34(10):1115-1151. [19] MAVRIPLIS D J, VASSBERG J C, TINOCO E N, et al. Grid quality and resolution issues from the drag prediction workshop series[J]. Journal of Aircraft, 2009, 46(3):935-950. [20] LEE-RAUSCH E M, BUMING P G. CFD sensitivity analysis of a drag prediction workshop wing/body transport configuration:AIAA-2003-3400[R]. Reston, VA:AIAA, 2003. [21] MARCUS L S, TOMMIE F L, WILLIAM L P. Integrated test and evaluation for the 21st century:AIAA-2004-6873[R]. Reston, VA:AIAA, 2004. [22] 张锡金. 飞机设计手册(第6册):气动设计[M]. 北京:航空工业出版社, 2002:1-95. ZHANG X J. Aircraft design manual (Volume 6):Aerodynamic design[M]. Beijing:Aviation Industry Press, 2002:1-95(in Chinese). [23] 孙智伟, 白俊强, 高正红, 等. 现代超临界翼型设计及其风洞试验[J]. 航空学报, 2015, 36(3):804-818. SUN Z W, BAI J Q, GAO Z H, et al. Design and wind tunnel test investigation of the modern supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):804-818(in Chinese). [24] LI R Z, DENG K W, ZHANG Y F, et al. Pressure distribution guided supercritical wing optimization[J]. Chinese Journal of Aeronautics, 2018, 31(9):1842-1854. [25] LI R Z, ZHANG Y F, CHEN H X. Evolution and development of "man-in-loop" in aerodynamic optimization design[J]. Acta Aerodynamica Sinica, 2017, 35(4):529-543. [26] ZHAO T, ZHANG Y F, CHEN H X. Multi-objective aerodynamic optimization of supercritical wing with sub-stantial pressure constraints[C]//AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2015:37-55. [27] ZHANG Y F, CHEN H X, ZHANG M, et al. Supercritical wing design and optimization for transonic civil airplane:AIAA-2011-0027[R]. Reston, VA:AIAA, 2011. [28] WAKAYAMA S, KROO I. Subsonic wing planform design using multidisciplinary optimization[J]. Journal of Aircraft, 1995, 32(4):746-753. [29] SHEN G, BAI J, LIU N. Mechanical and aerodynamic study of 2D trailing edge variable camber system for civil transport aircraft[C]//20178th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), 2017. [30] 白俊强, 陈颂, 华俊, 等. 基于伴随方程和自由变形技术的跨声速机翼气动设计方法研究[J]. 空气动力学学报, 2014, 32(6):820-826. BAI J Q, CHEN S, HUA J, et al. Transonic wing aerodynamic design based on continuous adjoint method and free form deform technique[J]. Acta Aerodynamica Sinica, 2014, 32(6):820-826(in Chinese). [31] EDI P, FIELDING J P. Civil-transport wing design concept exploiting new technologies[J]. Journal of Aircraft, 2006, 43(4):932-940. [32] RECKZEH D. Aerodynamic design of airbus high-lift wings in a multidisciplinary environment[C]//European Congress on Computational Methods in Applied Sciences and Engineering, 2004. [33] RUDOLPH P. High-lift systems on commercial subsonic airliners:NASA CR 4746[R].Washington, D.C.:NASA, 1996. [34] LIU Y, BAI J, LIVNE E. Robust optimization of varia-ble-camber continuous trailing-edge flap static aeroelastic action[J]. AIAA Journal, 2017, 55(3):1031-1043. [35] 周旺仪, 白俊强, 乔磊, 等. 变弯翼型与增升装置多目标气动优化设计研究[J]. 西北工业大学学报, 2018, 36(1):83-90. ZHOU W Y, BAI J Q, QIAO L, et al. A study of multi-objective aerodynamic optimization design for variable camber air-foils and high lift devices[J]. Journal of Northwestern Polytechnical University, 2018, 36(1):83-90(in Chinese). [36] 刘睿, 白俊强, 刘南, 等. 二维增升装置气动外形与驱动机构综合优化研究[J]. 西北工业大学学报, 2015, 33(4):525-532. LIU R, BAI J Q, LIU N, et al. Researching aerodynamic-mechanical optimization of 2D high-lift system[J]. Journal of Northwestern Polytechnical University, 2015, 33(4):525-532(in Chinese). [37] 邱亚松, 白俊强, 李亚林, 等. 复杂几何细节对增升装置气动性能影响研究[J]. 航空学报, 2012, 33(3):421-429. QIU Y S, BAI J Q, LI Y L, et al. Study on influence of complex geometry details on the aerodynamic performance of high-lift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):421-429(in Chinese). [38] GEYR H F V, SCHADE N. CFD prediction of maximum lift effects on realistic high-lift-commercial-aircraft-configurations within the European project EUROLIFT Ⅱ:AIAA-2007-4299[R]. Reston, VA:AIAA, 2007. [39] 白俊强, 刘南, 邱亚松, 等. 大型民用运输机短舱涡流片增升效率以及参数影响研究[J]. 西北工业大学学报, 2013, 31(4):522-529. BAI J Q, LIU N, QIU Y S, et al. Investigation on influence of nacelle chine of large civil transport aircraft on high-lift efficiency and on influence of relevant parameters[J]. Journal of Northwestern Polytechnical University, 2013, 31(4):522-529(in Chinese). [40] 张宇飞, 陈海昕, 符松, 等. 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33(11):1993-2001. ZHANG Y F, CHEN H X, FU S, et al. A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1993-2001(in Chinese). [41] 杨体浩, 白俊强, 辛亮, 等. 考虑静气动弹性影响的客机机翼气动/结构一体化设计研究[J]. 空气动力学学报, 2017, 35(4):598-609. YANG T H, BAI J Q, XIN L, et al. Aerodynamic/structural inte-grated design for aircraft wing with static aeroelasticity effect[J]. Acta Aerodynamica Sinica, 2017, 35(4):598-609(in Chinese). [42] 巨龙, 白俊强, 孙智伟, 等. 客机机翼环量分布的气动/结构一体化设计[J]. 航空学报, 2013, 34(12):2725-2732. JU L, BAI J Q, SUN Z W, et al. Integrated aero-structure design of circulation distribution for commercial aircraft wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2725-2732(in Chinese). [43] ZHANG Y F, CHEN H X, ZHANG W S, et al. Wing/engine integrated optimization based on Navier-Stokes equations:AIAA-2012-1046[R]. Reston, VA:AIAA, 2012. [44] ZHANG M H, WANG Y K, FU S, Generation mechanism and reduction method of induced drag produced by interacting wingtip vortex system[J]. Journal of Mechanics, 2017, 34(2):231-241. [45] 白俊强, 王丹, 何小龙, 等. 改进的RBF神经网络在翼梢小翼优化设计中的应用[J]. 航空学报, 2014, 35(7):1865-1873. BAI J Q, WANG D, HE X L, et al. Application of an improved RBF neural network on aircraft winglet optimization design[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1865-1873(in Chinese). [46] 陈颂, 白俊强, 史亚云, 等. 民用客机机翼/机身/平尾构型气动外形优化设计[J]. 航空学报, 2015, 36(10):3195-3207. CHEN S, BAI J Q, SHI Y Y, et al. Aerodynamic shape optimization design of civil jet wing-body-tail configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3195-3207(in Chinese). |