[1] ZARCHAN P. Tactical and strategic missile guidance[M]. 6th ed. Reston, VA: AIAA, 2012: 35-105. [2] NESLINE F W, ZARCHAN P. A new look at classical vs modern homing missile guidance[J]. Journal of Guidance, Control and Dynamics, 1981, 4(1): 78-85. [3] SU W S, YAO D N, LI K B, et al. A novel biased proportional navigation guidance law for close approach phase[J]. Chinese Journal of Aeronautics, 2016, 29(1): 228-237. [4] YU W B, CHEN W C, YANG L, et al. Optimal terminal guidance for exoatmospheric interception[J]. Chinese Journal of Aeronautics, 2016, 29(4): 1052-1064. [5] 陈峰, 肖业伦, 陈万春. 基于零控脱靶量的大气层外超远程拦截制导[J]. 航空学报, 2009, 30(9): 1583-1589. CHEN F, XIAO Y L, CHEN W C. Guidance based on zero effort miss for super-range exoatmospheric intercept[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1583-1589 (in Chinese). [6] 陈峰, 王育林, 肖业伦, 等. 基于预测脱靶量的远程拦截速度增益导引[J]. 航空学报, 2008, 29(6): 1665-1672. CHEN F, WANG Y L, XIAO Y L, et al. Velocity-to-be-gained guidance based on predicted miss distance for long-range intercept[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1665-1672 (in Chinese). [7] WEISS M. Adjoint method for missile performance analysis on state-space models[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(2): 236-248. [8] HE T L, CHEN W C. A new interpretation of adjoint method in linear time-varying system analysis[C]//IEEE International Conference on CIS & RAM. Piscataway, NJ: IEEE Press, 2017: 58-63. [9] 赫泰龙, 陈万春, 刘芳. 高超声速飞行器平稳滑翔扰动运动伴随分析[J/OL]. 北京航空航天大学学报, (2018-04-18)[2018-04-20]. http://kns.cnki.net/kcms/detail/11.2625.V.20180418.1057.003.html HE T L, CHEN W C, LIU F. Adjoint analysis of steady glide with disturbance motion for hypersonic vehicle[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2018-04-18) [2018-04-20]. http://kns.cnki.net/kcms/detail/11.2625.V.20180418.1057.003.html (in Chinese). [10] 王辉, 林德福, 祁载康, 等. 时变最优的增强型比例导引及其脱靶量解析解[J]. 红外与激光工程, 2013, 42(3): 692-698. WANG H, LIN D F, QI Z K, et al. Time-varying optimal augmented proportional navigation and miss distance closed-form solutions[J]. Infrared and Laser Engineering, 2013, 42(3): 692-698 (in Chinese). [11] KABAMBA P T, GIRARD A R. Fundamentals of aerospace navigation and guidance[M]. Cambridge: Cambridge University Press, 2014: 141-144. [12] INCE E L. Ordinary differential equations[M]. New York: Dover Publication, Inc., 1978: 158-185. [13] WASOW W. Asymptotic expansions for ordinary differential equations[M]. New York: Dover Publication, Inc., 1987: 9-48. [14] CODDINGTON E A, CARLSON R. Linear ordinary differential equations[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1997: 163-220. [15] BENDER C M, ORSZAG S A. Advanced mathematical methods for scientists and engineers: Asymptotic methods and perturbation theory[M]. Berlin: Springer, 1999: 61-145. [16] DUNKEL O. Regular singular points of a system of homogeneous linear differential equations of the first order[J]. Proceedings of the American Academy of Arts and Sciences, 1902, 38(9): 341-370. [17] VAZQUEZ-LEAL H, SARMIENTO-REYES A. Power series extender method for the solution of nonlinear differential equations[J/OL]. Mathematical Problems in Engineering, 2015, 15(7): 1-7. [18] HOLT G C. Linear proportional navigation: An exact solution for a 3rd-order missile system[J]. Proceedings of the Institution of Electrical Engineers, 1977, 124(12): 1230-1236. [19] BOAS R P. Partial sums of infinite series, and how they grow[J]. The American Mathematical Monthly, 1977, 84(4): 237-258. [20] ASCHER, U, GREIF C. A first course in numerical methods[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2011: 35-55. [21] HIGHAM N. Accuracy and stability of numerical algorithms[M]. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 2002: 93-104. |