[1] HUBBARD H H. Aeroacoustics of flight vehicles: Theory and practice[M]. Melville, NY: American Institute of Physics, 1995.
[2] HARDIN J C, LAMKIN S L. Concepts for reduction of blade-vortex interaction noise[J]. Journal of Aircraft, 1986, 24(2): 120-125.
[3] YU Y H, GMELIN B, SPLETTSTOESSER W, et al. Reduction of helicopter blade-vortex interaction noise by active rotor control technology[J]. Progress in Aerospace Sciences, 1997, 33(9): 647-687.
[4] WOOD E R, POWERS R W, CLINE J H, et al. On developing and flight testing a higher Harmonic control system[J]. Journal of the American Helicopter Society, 1985, 30(1): 3-20.
[5] POLYCHRONIADIS M, ACHACHE M. Higher harmonic control: Flight tests of an experimental system on SA 349 research gazelle[C]//American Helicopter Society Annual Forum, 1986.
[6] WALSH D M. Flight tests of an open loop higher harmonic control system on an S-76A helicopter[D]. BocaRaton: Florida Florida Atlantic University, 1986.
[7] GIOVANETTI E B, HALL K C. Optimum design of compound helicopters that use higher harmonic control[J]. Journal of Aircraft, 2015, 52(5): 1-10.
[8] SPLETTSTOESSER W R, SCHULTZ K J, KUBE R, et al. A higher harmonic control test in the DNW to reduce impulsive BVI noise[J]. Journal of the American Helicopter Society, 1994, 39(4): 3-13.
[9] BOYD D D. HART-Ⅱ acoustic predictions using a coupled CFD/CSD method[C]//American Helicopter Society Annual Forum, 2009.
[10] 杨一栋, 袁卫东. 直升机随机自适应高阶谐波控制抑振研究[J]. 振动工程学报, 1996(2): 177-181. YANG Y D, YUAN W D. Study of helicopter vibration reduction technique with stochastic adaptive HHC[J]. Journal of Vibration Engineering, 1996(2): 177-181 (in Chinese).
[11] 冯剑波, 陆洋, 徐锦法, 等. 旋翼桨-涡干扰噪声开环桨距主动控制研究[J]. 航空学报, 2014, 35(11): 2901-2909. FENG J B, LU Y, XU J F, et al. Research on the effect of open-loop active blade pitch control on rotor BVI noise alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2901-2909 (in Chinese).
[12] WALL B G, LIM J W, SMITH M J. An assessment of comprehensive code prediction state-of-the-art using the HART Ⅱ international workshop data[C]//American Helicopter Society Annual Forum, 2012.
[13] WALL B G. Prescribed wake modifications to account for harmonic rotor loading and validation with HART data[C]//American Helicopter Society Annual Forum, 2011.
[14] WALL B G. Helicopter rotor BVI airloads computation using advanced prescribed wake modeling[C]//29th AIAA Applied Aerodynamics Conference, 2011.
[15] BEDDOES T S. A wake model for high resolution airloads[C]//International Conference on Rotorcraft Basic Research, 1985.
[16] LEISHMAN J G. Principles of helicopter aerodynamics[M]. Cambridge: Cambridge University Press, 2006.
[17] BHAGWAT M J, LEISHMAN J G. Generalized viscous vortex model for application to free-vortex wake and aeroacoustic calculations[C]//American Helicopter Society Annual Forum, 2002.
[18] WALL B G. The effect of HHC on the vortex convection in the wake of a helicopter rotor[J]. Aerospace Science & Technology, 2000, 4(5): 321-336.
[19] YUAN K A, FRIEDMANN P P. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips: NASA Report 4665[R]. Washington, D.C.: NASA, 1995.
[20] WALL B G. 2nd HHC Aeroacoustic rotor test (HART-Ⅱ)-Part 1: Test documentation: Report IB 111-2003/31[R]. Cologne: German Aerospace Center Institute, 2003.
[21] WILLIAMS J E F, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1969, 264(1151): 321-342.
[22] FARASSAT F. Derivation of formulations 1 and 1A of Farassat: NASA TM-2007-214853[R]. Washington, D.C.: NASA, 2007. |