[1] XIE G N, ZHANG R P, MANCA O. Thermal and thermomechanical performances of pyramidal core sandwich panels under aerodynamic heating[J]. Journal of Thermal Science and Engineering Applications, 2017, 9(1):014503. [2] CHENG H M, XUE H F, HONG C Q, et al. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird's nest structure[J].Composites Science and Technology, 2017, 140:63-72. [3] XU Y H, HU X, YANG Y X, et al. Dynamic simulation of insulation material ablation process in solid propellant rocket motor[J]. Journal of Aerospace Engineering, 2015, 28(5):04014118. [4] CARTA D, CORRIAS A, MOUNTJOY G, et al. Structural study of high porous nanocomposite aerogels[J]. Journal of Non-Crystalline Solids, 2007, 353:1785-1788. [5] BAILLIS D, COQUARD R, MOURA L M. Heat transfer in cellulose-based aerogels:Analytical modelling and measurements[J]. Energy, 2015, 84:732-744. [6] 胡子君, 李俊宁, 孙陈诚, 等.纳米超级隔热材料及其最新研究进展[J]. 中国材料进展, 2012, 31(8):25-31. HU Z J, LI J N, SUN C C, et al. Recent developments of nano-superinsulating materials[J]. Materials China, 2012, 31(8):25-31(in Chinese). [7] FRICKE J, EMMERLING A. Aerogels-recent progress in production technique and novel applications[J]. Journal of Sol-Gel Science and Technology, 1998, 13(1-3):299-303. [8] YUE C W, FENG J, FENG J Z, et al. Efficient gaseous thermal insulation aerogels from 2-dimension nitrogen-doped graphene sheets[J]. International Journal of Heat and Mass Transfer, 2017, 109:1026-1030. [9] LIU H, XIA X L, AI Q, et al. Experimental investigations on temperature-dependent effective thermal conductivity of nanoporous silica earogel composite[J]. Experimental Thermal and Fluid Science, 2017, 84:67-77. [10] HOSEINI A, MCCAGUE C, ANDISHEH-TADBIR M, et al. Aerogel blankets:From mathematical modeling to material characterization and experimental analysis[J]. International Journal of Heat and Mass Transfer, 2016, 93:1124-1131. [11] HURWITZ F I, GALLAGHER M, OLIN T C, et al. Optimization of alumina and aluminosilicate aerogel structure for high-temperature performance[J]. International Journal of Applied Glass Science, 2014, 5(3):276-286. [12] BI C, TANG G H, HU Z J. Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2014, 73:103-109. [13] BAILLIS D, COQUARD R, MOURA L M. Heat transfer in cellulose-based aerogels:Analytical modelling and measurements[J]. Energy, 2015, 84:732-744. [14] 杨景兴, 何凤梅, 于帆, 等. SiO2气凝胶热参数测试及评价[J]. 宇航材料工艺, 2013(2):92-94. YANG J X, HE F M, YU F, et al. Measurement and estimate of thermophysical parameters of SiO2 aerogel[J]. Aerospace Materials and Technology, 2013(2):92-94(in Chinese). [15] 周祥发, 冯坚, 肖汉宁, 等. 二氧化硅气凝胶隔热复合材料的性能及其瞬态传热模拟[J]. 国防科技大学学报, 2009, 31(2):36-40. ZHOU X F, FENG J, XIAO H N, et al. Performance and heat transfer simulation of silica aerogel composites[J]. Journal of National University of Defense of Technology, 2009, 31(2):36-40(in Chinese). [16] 李翔, 傅波. 高超声速飞行器复杂结构热试验技术[J]. 航空学报, 2016, 37(S1):S73-S79. LI X, FU B. Thermal test technique of complex structure of hypersonic aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S73-S79(in Chinese). [17] SWANSON A D, COGHLAN S C, PRATT D M, et al. Hypersonic vehicle thermal structure test challenges:AIAA-2007-1670[R]. Reston, VA:AIAA, 2007. [18] 谭光辉, 李秋彦, 邓俊. 热环境下结构固有振动特性试验及分析[J]. 航空学报, 2016, 37(S1):S32-S37. TAN G H, LI Q Y, DENG J. Test and analysis of natural modal characteristics of a wing model with thermal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S32-S37(in Chinese). [19] SPIVEY N D. High-temperature modal survey of a hot-structure control surface:NASA/TM-2011-215965[R]. Washington, D.C.:NASA, 2011. [20] 吴大方, 商兰, 高镇同, 等. 1700℃高温、有氧及时变环境下隔热性能试验[J]. 宇航学报, 2015, 36(9):1083-1092. WU D F, SHANG L, GAO Z T, et al. Experimental research on thermal-insulation performance under high-temperature/oxidation and time-varying environment up to 1700℃[J]. Journal of Astronautics, 2015, 36(9):1083-1092(in Chinese). [21] 吴大方, 潘兵, 高镇同, 等. 超高温、大热流、非线性气动热环境试验模拟及测试技术研究[J]. 实验力学, 2012, 27(3):255-271. WU D F, PAN B, GAO Z T, et al. On the experimental simulation of ultra-high temperature, high heat flux and nolinear aerodynamic heating environment and thermo-machanical testing technique[J]. Journal of Experimental Mechanics, 2012, 27(3):255-271(in Chinese). [22] 吴大方, 王岳武, 商兰, 等. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6):1861-1875. WU D F, WANG Y W, SHANG L, et al. Test research and numerical simulation on thermal modal of plate structure in 1200℃ high-temperature environments[J]. Acta Aeronautica et Astronantica Sinica, 2016, 37(6):1861-1875(in Chinese). [23] 吴文军, 胡子君, 李俊宁, 等. Al2O3掺杂对SiO2纳米透波/隔热材料性能的影响[J]. 宇航材料工艺, 2014(1):97-100. WU W J, HU Z J, LI J N, et al. Effect on the properties of SiO2 nanoporous transparent-wave/heat-insulation materials doped with Al2O3[J]. Aerospace Materials and Technology, 2014(1):97-100(in Chinese). [24] 杨世铭, 陶文铨. 传热学[M]. 北京:高等教育出版社, 2006:33-296. YANG S M, TAO W Q. Heat transfer[M]. Beijing:Higher Education Press, 2006:33-296(in Chinese). |