ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (10): 527577-527577.doi: 10.7527/S1000-6893.2022.27577
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
ZHAO Jin1, SUN Xiangchun1, ZHANG Jun1, TANG Zhigong2, WEN Dongsheng1
Received:
2022-06-06
Revised:
2022-06-20
Published:
2022-08-08
Supported by:
CLC Number:
ZHAO Jin, SUN Xiangchun, ZHANG Jun, TANG Zhigong, WEN Dongsheng. Research advances on heat and mass transfer coupling effect at gas-solid interface for thermal protection materials[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527577-527577.
[1] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51:379-402. [2] GIMELSHEIN S F, WYSONG I J. Gas-phase recombination effect on surface heating in nonequilibrium hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2018, 33(3):638-646. [3] 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2):287-302. MENG S H, JIN H, WANG G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302 (in Chinese). [4] 梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021, 42(4):409-424. LIANG W, JIN H, MENG S H, et al. Research progress on new thermal protection mechanism of hypersonic vehicles[J]. Journal of Astronautics, 2021, 42(4):409-424 (in Chinese). [5] 金华. 防热材料表面催化特性测试与评价方法研究[D]. 哈尔滨:哈尔滨工业大学, 2014. JIN H. Surface catalyticity properties testing and characterization methods of thermal protection materilas[D]. Harbin:Harbin Institute of Technology, 2014 (in Chinese). [6] 王国林. 热防护设计中的气固非均相反应模型[D]. 哈尔滨:哈尔滨工业大学, 2019. WANG G L. Gas-solid heterogeneous reaction model for thermal protection design[D]. Harbin:Harbin Institute of Technology, 2019 (in Chinese). [7] KARIMI M S, OBOODI M J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows[J]. Heat and Mass Transfer, 2019, 55(2):547-569. [8] WANG Z H, YU Y L, BAO L. Heat transfer in nonequilibrium flows with homogeneous and heterogeneous recombination reactions[J]. AIAA Journal, 2018, 56(9):3593-3599. [9] YANG X F, GUI Y W, XIAO G M, et al. Reacting gas-surface interaction and heat transfer characteristics for high-enthalpy and hypersonic dissociated carbon dioxide flow[J]. International Journal of Heat and Mass Transfer, 2020, 146:118869. [10] 杨肖峰, 李芹, 杜雁霞, 等. 高超声速飞行器界面多相催化数值研究进展[J]. 航空学报, 2021, 42(12):625908. YANG X F, LI Q, DU Y X, et al. Progress in numerical research on interface heterogeneous catalysis of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12):625908 (in Chinese). [11] 朱燕伟. 热防护材料热环境与烧蚀热响应辨识方法研究[D]. 哈尔滨:哈尔滨工业大学, 2018. ZHU Y W. Research on the identification of the thermal environment and the thermal ablation response of thermal protection materials[D]. Harbin:Harbin Institute of Technology, 2018 (in Chinese). [12] BIANCHI D, MIGLIORINO M T, ROTONDI M, et al. Numerical analysis and wind tunnel validation of low-temperature ablators undergoing shape change[J]. International Journal of Heat and Mass Transfer, 2021, 177:121430. [13] ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10):1929-1953. [14] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles:A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176:341-356. [15] 黄鹏, 郑振荣, 毛科铸, 等. 热阻塞效应在有机硅树脂-碳纤织物复合材料烧蚀防热中的作用[J]. 复合材料学报, 2021, 38(9):3045-3055. HUANG P, ZHENG Z R, MAO K Z, et al. Effect of heat blockage on ablative thermal protection of silicone resin-carbon fiber fabrics[J]. Acta Materiae Compositae Sinica, 2021, 38(9):3045-3055 (in Chinese). [16] ZHU Y D, LEE C B, CHEN X, et al. Newly identified principle for aerodynamic heating in hypersonic flows[J]. Journal of Fluid Mechanics, 2018, 855:152-180. [17] ZHU Y D, CHEN X, WU J Z, et al. Aerodynamic heating in transitional hypersonic boundary layers:Role of second-mode instability[J]. Physics of Fluids, 2018, 30(1):011701. [18] ZHU Y D, GU D W, ZHU W, et al. Dilatational-wave-induced aerodynamic cooling in transitional hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2021, 911:A36. [19] ZENG Y, WANG D N, XIONG X, et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000℃[J]. Nature Communications, 2017, 8:15836. [20] WRIGHT M, HUGHES M F, BARNHARDT M, et al. An overview of technology investments in the NASA entry systems modeling project[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015:1892. [21] LACHAUD J, MANSOUR N N. Porous-material analysis toolbox based on OpenFOAM and applications[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(2):191-202. [22] KIM I, YANG Y, PARK G. Effect of titanium surface roughness on oxygen catalytic recombination in a shock tube[J]. Acta Astronautica, 2020, 166:260-269. [23] DE CESARE M, SAVINO L, CEGLIA G, et al. Applied radiation physics techniques for diagnostic evaluation of the plasma wind and thermal protection system critical parameters in aerospace re-entry[J]. Progress in Aerospace Sciences, 2020, 112:100550. [24] FU L, KARP M, BOSE S T, et al. Shock-induced heating and transition to turbulence in a hypersonic boundary layer[DB/OL]. arXiv preprint:2010.10571, 2020. [25] VASIL'EVSKII S A, KOLESNIKOV A, YAKUSHIN M. Determination of the effective probabilities of the heterogeneous recombination of atoms when heat flow in influenced by gas-phase reactions[J]. High Temperature, 1991, 29:411-419. [26] VLASOV A V, ZALOGIN G N, ZEMLYANSKII B A, et al. Methods and results of an experimental determination of the catalytic activity of materials at high temperatures[J]. Fluid Dynamics, 2003, 38(5):815-825. [27] KOVALEV V L, KOLESNIKOV A F, KRUPNOV A A, et al. Analysis of phenomenological models describing the catalytic properties of high-temperature reusable coatings[J]. Fluid Dynamics, 1996, 31(6):910-919. [28] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory[C]//34th Thermophysics Conference. Reston:AIAA, 2000:2366. [29] MIZUNO M, MORINO Y, YOSHINAKA T, et al. Evaluation of reaction rate constants for thermal protection materials in dissociated air flow[C]//33rd Thermophysics Conference. Reston:AIAA, 1999:3630. [30] APPAR A, KUMAR R, NASPOORI S K. Conjugate flow-thermal analysis of a hypersonic reentry vehicle in the rarefied flow regime[J]. Physics of Fluids, 2022, 34(2):026107. [31] HELBER B, TURCHI A, SCOGGINS J B, et al. Experimental investigation of ablation and pyrolysis processes of carbon-phenolic ablators in atmospheric entry plasmas[J]. International Journal of Heat and Mass Transfer, 2016, 100:810-824. [32] VILADEGUT A, CHAZOT O. Empirical modeling of copper catalysis for enthalpy determination in plasma facilities[J]. Journal of Thermophysics and Heat Transfer, 2019, 34(1):26-36. [33] DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics, 2021, 912:A29. [34] HOLLOWAY M E, HANQUIST K M, BOYD I D. Assessment of thermochemistry modeling for hypersonic flow over a double cone[J]. Journal of Thermophysics and Heat Transfer, 2020, 34(3):538-547. [35] WANG Y Q, RISCH T K, KOO J H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator[J]. Aerospace Science and Technology, 2019, 91:301-309. [36] NORMAN P, SCHWARTZENTRUBER T, COZMUTA I. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows[C]//42nd AIAA Thermophysics Conference. Reston:AIAA, 2011:3644. [37] BALAT-PICHELIN M, BADIE J M, BERJOAN R, et al. Recombination coefficient of atomic oxygen on ceramic materials under earth re-entry conditions by optical emission spectroscopy[J]. Chemical Physics, 2003, 291(2):181-194. [38] CARLETON K L, MARINELLI W J. Spacecraft thermal energy accommodation from atomic recombination[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(4):650-655. [39] DICKENS P G, SUTCLIFFE M B. Recombination of oxygen atoms on oxide surfaces. Part 1. Activation energies of recombination[J]. Transactions of the Faraday Society, 1964, 60:1272-1285. [40] KIM Y C, BOUDART M. Recombination of oxygen, nitrogen, and hydrogen atoms on silica:Kinetics and mechanism[J]. Langmuir, 1991, 7(12):2999-3005. [41] STEWART D. Determination of surface catalytic efficiency for thermal protection materials-Room temperature to their upper use limit[C]//31st Thermophysics Conference. Reston:AIAA, 1996:1863. [42] RUTIGLIANO M, CACCIATORE M. Recombination of oxygen atoms on silica surface:New and more accurate results[J]. Journal of Thermophysics and Heat Transfer, 2015, 30(1):247-250. [43] TATAR M. Two-dimensional study of charring ablative materials using finite volume method[J]. International Journal of Thermal Sciences, 2021, 159:106642. [44] BRUNE A J, BRUCE W E, GLASS D E, et al. Computational predictions of the hypersonic material environmental test system arcjet facility[J]. Journal of Thermophysics and Heat Transfer, 2018, 33(1):199-209. [45] APPAR A, KUMAR R. Effect of thermal ablation at the fluid-solid interface of a hypersonic reentry vehicle in rarefied flow regime[J]. International Journal of Computational Fluid Dynamics, 2021, 35(8):610-631. [46] VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF:A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41):9396-9409. [47] CHENOWETH K, VAN DUIN A C T, GODDARD W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5):1040-1053. [48] SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field:Development, applications and future directions[J]. NPJ Computational Materials, 2016, 2:15011. [49] VLACHAS P R, ARAMPATZIS G, UHLER C, et al. Multiscale simulations of complex systems by learning their effective dynamics[J]. Nature Machine Intelligence, 2022, 4(4):359-366. [50] GRILLI M, SCHMID P J, HICKEL S, et al. Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700:16-28. [51] YASUDA S, YAMAMOTO R. A model for hybrid simulations of molecular dynamics and computational fluid dynamics[J]. Physics of Fluids, 2008, 20(11):113101. [52] SMITH E R, TREVELYAN D J, RAMOS-FERNANDEZ E, et al. CPL library-A minimal framework for coupled particle and continuum simulation[J]. Computer Physics Communications, 2020, 250:107068. [53] ROOHI E, ZHANG Y H. Advances in micro/nano fluid flows:In memory of Professor Jason Reese[J]. Physics of Fluids, 2021, 33(4):040402. [54] VINUESA R, BRUNTON S L. Enhancing computational fluid dynamics with machine learning[DB/OL]. arXiv preprint:2110.02085, 2021. [55] 杨强, 孟松鹤, 仲政, 等. 力学研究中"大数据"的启示、应用与挑战[J]. 力学进展, 2020, 50:406-449. YANG Q, MENG S H, ZHONG Z, et al. Big Data in mechanical research:Potentials, applications and challenges[J]. Advances in Mechanics, 2020, 50:406-449 (in Chinese). [56] JARMATZ P, MAURER F, WITTENBERG H, et al. MaMiCo:Non-local means and POD filtering with flexible data-flow for two-way coupled molecular-continuum HPC flow simulation[J]. Journal of Computational Science, 2022, 61:101617. [57] WANG K, CHEN Y, MEHANA M, et al. A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media[J]. Journal of Computational Physics, 2021, 443:110526. [58] BUHENDWA A B, BEZGIN D A, ADAMS N A. Consistent and symmetry preserving data-driven interface reconstruction for the level-set method[J]. Journal of Computational Physics, 2022, 457:111049. [59] BEZGIN D A, SCHMIDT S J, ADAMS N A. A data-driven physics-informed finite-volume scheme for nonclassical under compressive shocks[J]. Journal of Computational Physics, 2021, 437:110324. [60] RIBEIRO M D, REHMAN A, AHMED S, et al. DeepCFD:Efficient steady-state laminar flow approximation with deep convolutional neural networks[DB/OL]. arXiv preprint:2004.08826, 2020. [61] GUO T Q, SHEN E N, LU Z L, et al. Thermal flutter prediction at trajectory points of a hypersonic vehicle based on aerothermal synchronization algorithm[J]. Aerospace Science and Technology, 2019, 94:105381. [62] REN X M, ZHANG M, NIE H. Optimization of multilayer thermal protection system by using phase change material under aerodynamic heating[J]. Applied Thermal Engineering, 2021, 191:116677. [63] CHEN F, LIU H, ZHANG S T. Coupled heat transfer and thermo-mechanical behavior of hypersonic cylindrical leading edges[J]. International Journal of Heat and Mass Transfer, 2018, 122:846-862. [64] 林烈, 吴彬, 吴承康. 高温气流中材料表面催化特性研究[J]. 空气动力学学报, 2001, 19(4):407-413. LIN L, WU B, WU C K. Studies on surface catalytic effect of materials in a high-temperature gas flow[J]. Acta Aerodynamica Sinica, 2001, 19(4):407-413 (in Chinese). [65] 董维中, 乐嘉陵, 刘伟雄. 驻点壁面催化速率常数确定的研究[J]. 流体力学实验与测量, 2000, 14(3):1-6. DONG W Z, LE J L, LIU W X. The determination of catalytic rate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):1-6 (in Chinese). [66] YANG X F, XIAO G M, DU Y X, et al. Heat transfer with interface effects in high-enthalpy and high-speed flow:Modelling review and recent progress[J]. Applied Thermal Engineering, 2021, 195:116721. [67] YU Q J, YANG X F, NIU J Q, et al. Aerodynamic thermal environment around transonic tube train in choked/unchoked flow[J]. International Journal of Heat and Fluid Flow, 2021, 92:108890. [68] 粟斯尧, 石义雷, 柳森, 等. 有限催化对返回舱气动热环境影响[J]. 空气动力学学报, 2018, 36(5):878-884. SU S Y, SHI Y L, LIU S, et al. Finite-rate surface catalysis effects on aero-heating environment of a reentry capsule[J]. Acta Aerodynamica Sinica, 2018, 36(5):878-884 (in Chinese). [69] LI Q, NIE L, ZHANG K L, et al. Experimental investigation on aero-heating of rudder shaft within laminar/turbulent hypersonic boundary layers[J]. Chinese Journal of Aeronautics, 2019, 32(5):1215- [70] 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9):023615. MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):023615 (in Chinese). [71] ZHUO L J, MENG S H, YI F J. The use of cooled axial conduction guarded probe for the measurement of transient heat flux by calibrating the unit step response[J]. International Journal of Heat and Mass Transfer, 2020, 147:118850. [72] LI W, FANG G D, LI W J, et al. Numerical investigation of mesoscopic volumetric ablation of 3D braided charring composites[J]. Applied Thermal Engineering, 2020, 181:116016. [73] ZHU Y W, YI F J, MENG S H, et al. Multiphysical behavior of a lightweight ablator:Experiments, modeling, and analysis[J]. Journal of Spacecraft and Rockets, 2017, 55(1):106-115. [74] WANG Z, WANG R X, SONG H W, et al. Decoupling mechanisms of "avalanche" phenomenon for laser ablation of C/SiC composites in hypersonic airflow environment[J]. International Journal of Thermal Sciences, 2022, 173:107414. [75] 姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(3):347-355. JIANG Z L. Progresses on experimental techniques of hypersonic and high-enthalpy wind tunnels[J]. Acta Aerodynamica Sinica, 2019, 37(3):347-355 (in Chinese). [76] 苑朝凯, 姜宗林. 高超声速高焓条件下的内嵌式温敏漆测量方法[J]. 力学学报, 2022, 54(1):48-58. CHAO K Y, JIANG Z L. Measurement method of embedded temperature sensitive paint under hypersonic high enthalpy conditions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1):1-11 (in Chinese). [77] LI B, LI H J, YAO X Y, et al. Ablation behavior of sharp leading edge parts made of rare earth La-compound modified ZrB2 coated C/C composites[J]. Corrosion Science, 2020, 175:108895. [78] GOU J J, CHANG Y, YAN Z W, et al. The design of thermal management system for hypersonic launch vehicles based on active cooling networks[J]. Applied Thermal Engineering, 2019, 159:113938. [79] SHI S B, LI L J, LIANG J, et al. Surface and volumetric ablation behaviors of SiFRP composites at high heating rates for thermal protection applications[J]. International Journal of Heat and Mass Transfer, 2016, 102:1190-1198. [80] CUI Z L, ZHAO J, YAO G C, et al. Competing effects of surface catalysis and ablation in hypersonic reentry aerothermodynamic environment[J]. Chinese Journal of Aeronautics, 2021 [81] CUI Z L, ZHAO J, YAO G C, et al. Molecular insight of the interface evolution of silicon carbide under hyperthermal atomic oxygen impact[J]. Physics of Fluids, 2022, 34(5):052101. [82] CUI Z L, ZHAO J, HE L C, et al. A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets[J]. Physics of Fluids, 2020, 32(11):112110. [83] CUI Z L, YAO G C, ZHAO J, et al. Atomistic-scale investigations of hyperthermal oxygen-graphene interactions via reactive molecular dynamics simulation:The gas effect[J]. Physics of Fluids, 2021, 33(5):052107. [84] ZHANG J, JOHN B, PFEIFFER M, et al. Particle-based hybrid and multiscale methods for nonequilibrium gas flows[J]. Advances in Aerodynamics, 2019, 1(1):12. [85] LIU H Y, ZHANG J, CAPOBIANCHI P, et al. A multiscale volume of fluid method with self-consistent boundary conditions derived from molecular dynamics[J]. Physics of Fluids, 2021, 33(6):062004. [86] REN X, YUAN J Y, HE B J, et al. Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime[J]. Journal of Fluid Mechanics, 2019, 881:585-601. [87] GUO J H, LIN G P, BU X Q, et al. Parametric study on the heat transfer of a blunt body with counterflowing jets in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 121:84-96. [88] GAO Z X, XUE H C, ZHANG Z C, et al. A hybrid numerical scheme for aeroheating computation of hypersonic reentry vehicles[J]. International Journal of Heat and Mass Transfer, 2018, 116:432-444. [89] ZHAO Y T, YAN C, WANG X Y, et al. Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 136:808-820. [90] YANG X F, GUI Y W, TANG W, et al. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow[J]. Acta Astronautica, 2018, 147:445-453. [91] WANG B, WANG J T. Application of artificial intelligence in computational fluid dynamics[J]. Industrial & Engineering Chemistry Research, 2021, 60(7):2772-2790. [92] LIU J, WANG M, LI S. The rapid data-driven prediction method of coupled fluid-thermal-structure for hypersonic vehicles[J]. Aerospace, 2021, 8(9):265. [93] 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021, 42(4):524167. ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524167 (in Chinese). [94] TAO F, ZHANG H, LIU A, et al. Digital twin in industry:State-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4):2405-2415. [95] TAO F, SUI F Y, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(12):3935-3953. |
[1] | Zhifan YE, Jin ZHAO, Zhihui LI, Xiangchun SUN, Dongsheng WEN. Multiscale coupling simulation method for thermal protection material ablation based on thermochemical interfacial reactive model [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729469-729469. |
[2] | Yi RONG, Hui LIU, Ziwen YU, Pingping ZHU, Yue PENG, Jiahui YU. Behavior of cryogenic propellant in return stage of reusable launch vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629563-629563. |
[3] | WU Dafang, LIN Lujin, WU Wenjun, SUN Chencheng. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1 500℃ [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 223612-223612. |
[4] | LIU Liping, WANG Guolin, WANG Yiguang, MA Haojun, LUO Jie, ZHANG Jun. Test methods for determining surface catalytic properties of thermal protection materials in high enthalpy chemical non-equilibrium flows [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(10): 121317-121317. |
[5] | MENG Songhe, JIN Hua, WANG Guolin, YANG Qiang, CHEN Hongbo. Research Advances on Surface Catalytic Properties of Thermal Protection Materials [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(2): 287-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341