[1] |
田正雨. 高超声速流动的磁流体力学控制数值模拟研究[D]. 长沙:国防科技大学, 2008. TIAN Z Y. Numerical investigation for hypersonic flow control by magnetohydrodynamics methods[D]. Changsha:National University of Defense and Technology, 2008(in Chinese).
|
[2] |
潘勇. 高超声速流场磁场干扰效应数值模拟方法研究[D]. 南京:南京航空航天大学, 2007. PAN Y. Numerical methods for hypersonic flowfield with magnetic interference[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
|
[3] |
董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京:北京航空航天大学, 1996. DONG W Z. Numerical simulation and analysis of thermo-chemical non-equilibrium effects at hypersonic flows[D]. Beijing:Beihang University, 1996(in Chinese).
|
[4] |
乐嘉陵. 再入物理[M]. 北京:国防工业出版社, 2005:9-21. LE J L. Reentry physics[M]. Beijing:National Defence Industry Press, 2005:9-21(in Chinese).
|
[5] |
OTSU H, MATSUDA A, ABE T, et al. Numerical validation of the magnetic flow control for reentry vehicles:AIAA-2006-3236[R]. Reston, VA:AIAA, 2006.
|
[6] |
BOETTCHER C. A numerical study of magneto-hydrody-namic flows with respect to the hall effect:AIAA-2009-7254[R]. Reston, VA:AIAA, 2009.
|
[7] |
LEE J, HUERTA M A, ZHA G. Low Rem 3D MHD hypersonic equilibrium flow using high order WENO Schemes:AIAA-2010-0229[R]. Reston, VA:AIAA, 2010.
|
[8] |
BISEK N J, BOYD I D. Numerical study of magnetoaerodynamic flow around a hemisphere[J]. Journal of Spacecraft and Rockets, 2010, 47(5):816-827.
|
[9] |
BISEK N J, POGGIE J. Exploration of MHD flow control for a hypersonic blunt elliptic cone with an impregnated ablator:AIAA-2011-0897[R]. Reston, VA:AIAA, 2011.
|
[10] |
NAGATA Y, OTSU H, YAMADA K, et al. Influence of hall effect on electrodynamic flow control for weakly ionized flow:AIAA-2012-2734[R]. Reston, VA:AIAA, 2012.
|
[11] |
MASUDA K, SHIMOSAWA Y, FUJINO T. Three-dimensional numerical simulation of magnetohydro-dynamic flow control in reentry flight:AIAA-2015-3366[R]. Reston, VA:AIAA, 2015.
|
[12] |
FUJINO T, TAKAHASHI T. Numerical simulation of mars entry flight using magnetohydrodynamic parachute effect:AIAA-2016-3227[R]. Reston, VA:AIAA, 2016.
|
[13] |
BALSARA D S, MONTECINOS G I, TORO E F. Exploring various flux vector splittings for the magnetohydrodynamic system[J]. Journal of Computational Physics, 2016, 311:1-21.
|
[14] |
黄富来,黄护林. 磁场对高超声速弱电离气体流动的影响[J]. 航空学报, 2009, 30(10):1834-1839. HUANG F L,HUANG H L. Effect of magnetic field on hypersonic weakly ionized gas flow[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1834-1839(in Chinese).
|
[15] |
黄浩, 黄护林,张喜东, 等. 基于电子束电离的高超声速磁流体发电机[J]. 推进技术, 2013, 34(5):706-712. HUANG H, HUANG H L, ZHANG X D, et al. Hypersonic magnetohydrodynamic generator based on electron-beam-generated ionization[J]. Journal of Propulsion Technology, 2013, 34(5):706-712(in Chinese).
|
[16] |
卜少科, 薛雅心. 高超声速磁流体数值模拟研究[J]. 现代电子技术, 2014, 37(5):137-142. BU S K, XUE Y X. Research on numerical simulation of hypersonic MHD[J]. Modern Electronics Technique, 2014, 37(5):137-142(in Chinese).
|
[17] |
李开, 刘伟强. 高超声速飞行器磁控热防护系统建模分析[J]. 物理学报, 2016, 65(6):064701. LI K, LIU W Q. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles[J]. Acta Physica Sinica, 2016, 65(6):064701(in Chinese).
|
[18] |
李开, 柳军, 刘伟强. 高超声速飞行器磁控热防护霍尔电场数值方法研究[J]. 物理学报, 2017, 66(8):084702. LI K, LIU J, LIU W Q. Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system[J]. Acta Physica Sinica, 2017, 66(8):084702(in Chinese).
|
[19] |
姚霄, 刘伟强, 谭建国. 高速飞行器磁控阻力特性[J]. 物理学报, 2018,67(17):174702. YAO X, LIU W Q, TAN J G. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles[J]. Acta Physica Sinica, 2018, 67(17):174702(in Chinese).
|
[20] |
高铁锁,董维中,丁明松,等. 物理化学模型对高温流场等离子体分布的影响[J]. 空气动力学学报, 2013, 31(5):541-545. GAO T S, DONG W Z, DING M S, et al. The effects of physicochemical models on distribution of plasma in high-temperature flowfield[J]. Acta Aerodynamica Sinica, 2013, 31(5):541-545(in Chinese).
|
[21] |
高铁锁, 董维中, 江涛, 等. 化学模型对数值模拟等离子体流动的影响研究[J]. 宇航学报, 2016, 37(10):1193-1199. GAO T S, DONG W Z, JIANG T, et al. Research on effects of chemical models on numerical simulation of plasma flow[J]. Journal of Astronautics, 2016, 37(10):1193-1199(in Chinese).
|
[22] |
丁明松, 江涛, 董维中,等. 三维等离子体MHD气动热环境数值模拟[J]. 航空学报, 2017, 38(8):121030. DING M S, JIANG T, DONG W Z, et al. Numerical simulation of 3D plasma MHD aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):121030(in Chinese).
|
[23] |
MACHERET S O, SHNEIDER M N. Modeling of MHD power generation on board reentry vehicles:AIAA-2004-1024[R]. Reston, VA:AIAA, 2004.
|
[24] |
BITYURIN V, BOCHAROV A, LINEBERRY J. MHD flow control in hypersonic flight:AIAA-2005-3225[R]. Reston, VA:AIAA, 2005.
|
[25] |
丁明松,董维中,高铁锁,等.局部催化特性差异对气动热环境影响的计算分析[J]. 航空学报, 2018, 39(3):121588. DING M S, DONG W Z, GAO T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121588(in Chinese).
|
[26] |
丁明松, 董维中, 高铁锁, 等. 传感器催化特性差异对气动热影响的计算分析[J]. 宇航学报, 2017,38(12):1361-1371. DING M S, DONG W Z, GAO T S, et al. Computational analysis of the influence on aero-thermal environments caused by the catalytic property distinction of the heat flux sensor[J]. Journal of Astronautics, 2017,38(12):1361-1371(in Chinese).
|