Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (10): 29229-029229.doi: 10.7527/S1000-6893.2024.29229
• Reviews • Previous Articles Next Articles
Guiwei ZHANG1,2, Zhaoqing LIU2, Lei ZHU2, Heng ZHANG2, Wei TIAN1, Weiguang LI1, Zhichun YANG1()
Received:
2023-06-27
Revised:
2023-07-26
Accepted:
2023-09-22
Online:
2024-05-25
Published:
2023-10-25
Contact:
Zhichun YANG
E-mail:yangzc@nwpu.edu.cn
Supported by:
CLC Number:
Guiwei ZHANG, Zhaoqing LIU, Lei ZHU, Heng ZHANG, Wei TIAN, Weiguang LI, Zhichun YANG. Research progress of ground flutter simulation test technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 29229-029229.
1 | 谷迎松, 杨智春, 赵令诚. 飞行器气动弹性力学教程[M]. 西安: 西北工业大学出版社, 2021: 58-60. |
GU Y S, YANG Z C, ZHAO L C. Course of aeroelastic mechanics of aircraft[M]. Xi’an: Northwestern Polytechnical University Press, 2021: 58-60 (in Chinese). | |
2 | 张桂玮, 谭光辉, 徐钦炜, 等. 地面颤振模拟试验中加载系统动态特性的影响研究[J]. 振动与冲击, 2020, 39(16): 214-221, 260. |
ZHANG G W, TAN G H, XU Q W, et al. A study on the impact of dynamic characteristics of a loading system in ground flutter simulation[J]. Journal of Vibration and Shock, 2020, 39(16): 214-221, 260 (in Chinese). | |
3 | 侯英昱, 付志超, 朱剑, 等. 气动力模拟非接触式加载方法研究[J]. 空气动力学学报, 2018, 36(2): 357-361. |
HOU Y Y, FU Z C, ZHU J, et al. Research on contactless loading method for aerodynamic force test[J]. Acta Aerodynamica Sinica, 2018, 36(2): 357-361 (in Chinese). | |
4 | HOU Y Y, LIU Z Q. Aeroelastic test of large flexible structure based on electromagnetic dry wind tunnel[C]∥Asia-Pacific International Symposium on Aerospace Technology. Singapore: Springer, 2019: 2684-2691. |
5 | 侯英昱, 刘子强. 基于电磁干风洞的大柔性结构准模态试验研究[J]. 空气动力学学报, 2019, 37(1): 115-120. |
HOU Y Y, LIU Z Q. Quasi modal test of large flexible structure based on electromagnetic dry wind tunnel[J]. Acta Aerodynamica Sinica, 2019, 37(1): 115-120 (in Chinese). | |
6 | HOU Y Y, ZHU J, FU Z C. Computer aided physical test technology[C]∥Proceedings of the 4th International Conference on Computer Science and Application Engineering. New York: ACM, 2020. |
7 | HOU Y Y, LI Q, ZHANG Z Q. Unsteady aerodynamic simulation test based on ampere force and electromagnetic field[J]. Journal of Physics: Conference Series, 2022, 2242(1): 012037. |
8 | 赵永辉. 气动弹性力学与控制[M]. 北京: 科学出版社, 2007: 234-237. |
ZHAO Y H. Aeroelastic mechanics and control[M]. Beijing: Science Press, 2007: 234-237 (in Chinese). | |
9 | 万志强, 杨超. 飞行器飞行载荷分析与气动弹性优化[M]. 北京: 航空工业出版社, 2021: 83-95. |
WAN Z Q, YANG C. Flight load analysis and aeroelastic optimization of aircraft[M]. Beijing: Aviation Industry Press, 2021: 83-95 (in Chinese). | |
10 | 宋巧治. 基于鲁棒控制的多点激励力控制系统设计[D]. 西安:西北工业大学, 2014:31-57. |
SONG Q Z. Multi exciting force control system design based on robust control[D]. Xi’an: Northwestern Polytechnical University, 2014:31-57 (in Chinese). | |
11 | ZENG J, KINGSBURY D, RITZ E, et al. GVT-based ground flutter test without wind tunnel[C]∥Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011. |
12 | 胡巍, 杨智春, 谷迎松. 带操纵面机翼气动弹性地面试验仿真系统中的气动力降阶方法[J]. 西北工业大学学报, 2013, 31(5): 810-815. |
HU W, YANG Z C, GU Y S. A new and effective method for reducing order of aerodynamics of a wing with control surface for ground flutter test[J]. Journal of Northwestern Polytechnical University, 2013, 31(5): 810-815 (in Chinese). | |
13 | 许云涛. 地面颤振模拟试验方法研究[D]. 北京:北京航空航天大学, 2012:10-24. |
XU Y T. Studies on method of the ground flutter simulation test[D]. Beijing: Beihang University, 2012:10-24 (in Chinese). | |
14 | 叶正寅, 张伟伟, 史爱明, 等. 流固耦合力学基础及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2010: 226-227. |
YE Z Y, ZHANG W W, SHI A M,et al. Fundamentals of fluid-structure coupling and its application[M]. Harbin: Harbin Institute of Technology Press, 2010: 226-227 (in Chinese). | |
15 | WANG B W, FAN X L. Ground flutter simulation test based on reduced order modeling of aerodynamics by CFD/CSD coupling method[J]. International Journal of Applied Mechanics, 2019, 11(1): 1950008. |
16 | 宋巧治, 王彬文, 李晓东. 基于CFD的地面颤振模拟试验非定常气动力重构方法研究[J]. 振动与冲击, 2022, 41(10): 40-46. |
SONG Q Z, WANG B W, LI X D. Unsteady aerodynamic model reproduction method for ground flutter simulation test based on CFD[J]. Journal of Vibration and Shock, 2022, 41(10): 40-46 (in Chinese). | |
17 | JOHNSON M. Finite-state airloads for deformable airfoils on fixed and rotating wings[C]∥International Mechanical Engineering Congress and Exposition, 1994. |
18 | LEE B H K, GONG L, WONG Y S. Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity[J]. Journal of Fluids and Structures, 1997, 11(3): 225-246. |
19 | 王俊蛟. 非定常气动铰链力矩理论分析与试验系统研究[D]. 北京: 北京交通大学, 2018: 11-64. |
WANG J J. Theoretical analysis and experimental research on unsteady aerodynamic hinge moment[D]. Beijing: Beijing Jiaotong University, 2018: 11-64 (in Chinese). | |
20 | 邓智, 宋汉文. 基于反馈控制的桥梁节段模型干风洞实验仿真[J]. 振动与冲击, 2017, 36(5): 120-126. |
DENG Z, SONG H W. Simulation for a bridge section model’s wind tunnel test based on feedback control[J]. Journal of Vibration and Shock, 2017, 36(5): 120-126 (in Chinese). | |
21 | KEARNS J P. Flutter simulator: US3015948[P]. 1962-01-09. |
22 | SU W H, SONG W. A real-time hybrid aeroelastic simulation platform for flexible wings[J]. Aerospace Science and Technology, 2019, 95: 105513. |
23 | SU W H, SONG W, HILL V. Real-time hybrid simulation and experiment for aeroelastic testing of flexible wings[C]∥Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
24 | SU W H, SONG W. Stability of real-time hybrid aeroelastic simulations with actuation and sensor measurement delays[C]∥AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
25 | KEARNS J P. Missile-wing flutter simulation[R]. Johns Hopkins University Applied Physics Laboratory Technical Digest, 1963. |
26 | WU Z G, CHU L F, YUAN R Z, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles[J]. Science China Technological Sciences, 2012, 55(9): 2482-2488. |
27 | LISEYKIN G V, MARKIN I V, PRONIN M A, et al. Physical model vibration modeling using artificial flow[J]. TsAGI Science Journal, 2019, 50(1): 103-113. |
28 | BYKOV A V, KONDRASHEV G V, PARAFES’ S G, et al. Methods for investigating the unmanned aerial vehicle electric actuator performance in aeroelasticity tasks[J]. Russian Aeronautics (Iz VUZ), 2016, 59(3): 331-337. |
29 | WU Z G, ZHANG R J, MA C J, et al. Aeroelastic semiphysical simulation and wind-tunnel testing validation of a fin-actuator system[J]. Journal of Aircraft, 2017, 54(1): 235-245. |
30 | SMYSLOV V I. Tasks of the modal test and reproduction of forces by means of electromechanical simulation[J]. TsAGI Science Journal, 2017, 48(8): 761-771. |
31 | BARANOV N, VASILJEV K, NARIZHNY A, et al. Experimental investigation of the all-flying stabilizer flutter with nonlinear characteristics in the control links using aerodynamic forces electromechanical simulation[J]. Uchenye Zapiski TsAGI, 1983, XIV(3) (in Russian). |
32 | LISEYKIN G, BOGATYREV M, PRONIN M, et al. Research on dynamic stability of an elastic model using tests in artificial flow[C]∥16th International Forum on Aeroelasticity and Structural Dynamics,2015. |
33 | NARYZHNY A, PEDORA A, SMYSLOV V. Vibration tests with airflow simulation in the aeroelastic investigations on dynamically scaled models[J]. Uchenye Zapiski TsAGI, 2001, 32(1–2) (in Russian). |
34 | 潘树祥, 齐丕骞. 地面模拟热颤振试验研究[J]. 强度与环境, 1984, 11(2): 8-12. |
PAN S X, QI P Q. Experimental study on ground simulated thermal flutter[J]. Structure & Environment Engineering, 1984, 11(2): 8-12 (in Chinese). | |
35 | DHITAL K, HAN J H, LEE Y K. Approximation of distributed aerodynamic force to a few concentrated forces for studying supersonic panel flutter[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2016, 26(5): 518-527. |
36 | KARPEL M. Extensions to the minimum-state aeroelastic modeling method[J]. AIAA Journal, 1991, 29(11): 2007-2009. |
37 | 胡巍. 变体飞行器动力学建模及气动弹性特性研究[D]. 西安: 西北工业大学, 2017. |
HU W. Dynamic modeling and aeroelastic characteristics of variant aircraft[D].Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
38 | 宋巧治, 李晓东. 平板翼颤振地面模拟试验机理研究[J]. 结构强度研究, 2016(1):1-7. |
SONG Q Z, LI X D. Study on the mechanism of flutter ground simulation test of flat wing [J]. Structural Strength Research, 2016 (1):1-7 (in Chinese). | |
39 | DHITAL K, HAN J H. Panel flutter emulation using a few concentrated forces[J]. International Journal of Aeronautical and Space Sciences, 2018, 19(1): 80-88. |
40 | 李秋彦, 李刚, 魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报, 2020, 41(6): 523430. |
LI Q Y, LI G, WEI Y T, et al. Review of aeroelasticity design for advanced fighter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523430 (in Chinese). | |
41 | 陈浩宇, 王彬文, 宋巧治, 等. 热颤振地面模拟试验技术[J]. 航空学报, 2023, 44(8): 227295. |
CHEN H Y, WANG B W, SONG Q Z, et al. Thermal flutter ground simulation test[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 227295 (in Chinese). | |
42 | 陈浩宇, 王彬文, 宋巧治, 等. 时变系统地面颤振模拟试验方法研究[J]. 应用力学学报, 2022, 39(4): 633-641. |
CHEN H Y, WANG B W, SONG Q Z, et al. Research on the ground flutter simulation test method for time-varying system[J]. Chinese Journal of Applied Mechanics, 2022, 39(4): 633-641 (in Chinese). | |
43 | 许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报, 2012, 33(11): 1947-1957. |
XU Y T, WU Z G, YANG C. Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1947-1957 (in Chinese). | |
44 | 高博. 地面颤振试验系统动力学建模与控制仿真技术研究[D]. 北京: 中国航天科技集团公司第一研究院, 2018: 12-59. |
GAO B. Study on simulation technology of dynamical modeling and controller for the ground flutter test system[D].Beijing: China Academy of Launch Vehicle Technology, 2018: 12-59 (in Chinese). | |
45 | 宋巧治, 王彬文, 李晓东. 基于机翼颤振风洞试验模型的地面颤振模拟试验验证[J]. 工程与试验, 2021, 61(2): 3-7. |
SONG Q Z, WANG B W, LI X D. Ground flutter simulation test validation based on wing flutter wind tunnel test model[J]. Engineering & Test, 2021, 61(2): 3-7 (in Chinese). | |
46 | 黎伟明, 宋巧治, 刘继军. 地面颤振试验系统气动插值点优化配置方法研究[J]. 应用力学学报, 2022, 39(3): 445-451. |
LI W M, SONG Q Z, LIU J J. Sensor and shaker locations optimization of the ground flutter test system[J]. Chinese Journal of Applied Mechanics, 2022, 39(3): 445-451 (in Chinese). | |
47 | DHITAL K, HAN J H. Subsonic flutter emulation of composite laminate using a few concentrated forces[C]∥21st International Conference on Composite Materials, 2017. |
48 | YUN J M, HAN J H. Development of ground vibration test based flutter emulation technique[J]. The Aeronautical Journal, 2020, 124(1279): 1436-1461. |
49 | YUN J M, HAN J H. Application of ground flutter emulation test technique for the passive flutter suppression effect validation[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(6): 1344-1355. |
50 | WU Z G, MA C J, YANG C. New approach to the ground flutter simulation test[J]. Journal of Aircraft, 2016, 53(5): 1578-1580. |
51 | KEARNS J. A ground flutter simulator[R]. Laurel: Johns Hopkins University Applied Physics Laboratory, 1957. |
52 | KEARNS J. Flutter simulation[R]. Laurel: Johns Hopkins University Applied Physics Laboratory, 1962. |
53 | 曹登庆, 李基鹏, 邵崇晖. 一种分布式气动力与有限激振点激振载荷的等效方法: CN113218615A[P]. 2021-08-06. |
CAO D Q, LI J P, SHAO C H. Distributed aerodynamic force and finite excitation point excitation load equivalence method: CN113218615A[P]. 2021-08-06 (in Chinese). | |
54 | 刘楚源. 基于特征值跟踪的气动弹性载荷等效与简化[D]. 上海: 同济大学, 2019: 47-63. |
LIU C Y. Equivalent and simplified aeroelastic load based on eigenvalue tracking[D].Shanghai: Tongji University, 2019: 47-63 (in Chinese) . | |
55 | 刘楚源, 刘泽森, 宋汉文. 基于主动控制策略的机翼颤振特性模拟[J]. 力学学报, 2019, 51(2): 333-340. |
LIU C Y, LIU Z S, SONG H W. The simulation of airfoil flutter characteristic based on active control strategy[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 333-340 (in Chinese). | |
56 | ZHANG Z, GAO B, WANG J, et al. A generalised force equivalence-based modelling method for a dry wind-tunnel flutter test system[J]. The Aeronautical Journal, 2021, 125(1286): 720-741. |
57 | 俄)茹科夫斯基中央空气流体动力研究院主编. 李志译. 气动弹性[M]. 上海: 上海交通大学出版社, 2020: 383-400. |
Zhukovsky Central Air Fluid Power Research Institute. LI Z translated.Aeroelastic theory and practice[M]. Shanghai: Shanghai Jiao Tong University Press, 2020: 383-400 (in Chinese). | |
58 | ZHANG G W, YANG Z C, GU Y S. New approach to aerodynamic reduction in ground flutter simulation based on generalized aerodynamics[C]∥Proceeding of 26th International Congress on Sound and Vibration, 2019. |
59 | 张桂玮, 杨智春, 宋巧治, 等. 一种基于广义气动力的非定常气动力降阶方法: CN109933876A[P]. 2019-06-25. |
ZHANG G W, YANG Z C, SONG Q Z, et al. New approach to order reduction of aerodynamic force based on generalized aerodynamic forces: CN109933876A[P]. 2019-06-25 (in Chinese). | |
60 | 张桂玮. 考虑激振器特性的地面颤振模拟试验[D]. 西安:西北工业大学, 2022: 21-113. |
ZHANG G W. Study of ground flutter simulation test considering electrodynamic shaker characteristics[D]. Xi’an: Northwestern Polytechnical University, 2022:21-113 (in Chinese). | |
61 | 邵崇晖. 超声速流中壁板颤振的抑制和地面试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 72-84. |
SHAO C H. Suppression of nonlinear panel flutter in the supersonic flow and ground flutter test[D].Harbin: Harbin Institute of Technology, 2017: 72-84 (in Chinese). | |
62 | KARKLE P, NARIZHNY A, SMYSLOV V. Test bench investigation of random aircraft vibrations using electromechanical simulation of aerodynamic forces under different flight conditions.[J]. Uchenye Zapiski TsAGI, 1998, XXIX(1-2):157-164 (in Russian). |
63 | SMYSLOV V, DIJKSTRA K, KARKLE P. The experience in ground vibration tests of flexible flying vehicles using PRODERA equipment and some additional tasks[C]∥European Conference for Aerospace Sciences (EUCASS), 2005. |
64 | SMYSLOV V. Study of problems of aeroelastic stability of flight vehicles with playback of the aerodynamic forces at low Strouhal numbers[J]. Zapiski TsAGI, 2006, 37(1-2): 99-105. |
65 | LISEYKIN G, BOGATYREV M, PRONIN M, et al. Structural nonlinearities simulation on the flutter electromechanical modeling test bench[C]∥29th Congress of International Council of the Aeronautical Sciences, 2014. |
66 | ORLOVA O, PRONIN M, SMYSLOV V. Numerical simulation and experimental flutter research of an aircraft with asymmetric control surfaces[C]∥17th International roelasticity and Structural Dynamics, IFASD, 2017. |
67 | LEONTEVA R V, SMYSLOV V I. Features of simulating the force actions from a damaged engine at ground vibration tests of an airplane[J]. TsAGI Science Journal, 2016, 47(6): 649-663. |
68 | LEONTEVA R, PRONIN M, SMYSLOV V. Modeling of forced vibrations of the airplane with the engine imbalance аt ground resonance tests[C]∥17th International Forum on Aeroelasticity and Structural Dynamics, 2017. |
69 | SONG Q Z, YANG Z C, WANG W. Robust control of exciting force for vibration control system with multi-exciters[J]. Science China Technological Sciences, 2013, 56(10): 2516-2524. |
70 | 郭嘉瑞. 激励力源系统动力学特性研究[D]. 太原: 中北大学, 2020: 52-73. |
GUO J R. Research on dynamic characteristics of excitation force source system[D].Taiyuan: North University of China, 2020: 52-73 (in Chinese). | |
71 | MA C J, WU Z, YANG C. Determination of the dynamic characteristics of a multi-point excitation system using electrodynamic shakers and control of their exciting force[J]. Journal of Vibration Engineering & Technologies, 2016, 4(2):161-173. |
72 | YUN J M, HAN J H, LEE Y K. MIMO force control of electro-dynamic shaker system using inverse transfer function based controller[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2018, 28(1): 5-13. |
73 | TOMLINSON G R. Force distortion in resonance testing of structures with electro-dynamic vibration exciters[J]. Journal of Sound and Vibration, 1979, 63(3): 337-350. |
74 | RAO D K. On the glitches in the force transmitted by an electrodynamic exciter to a structure[C]∥Proceeding of 58th Shock and Vibration Symposium, 1987. |
75 | OLSEN N. Using and understanding electrodynamic shakers in modal applications[C]∥Proceedings of the 4th International Modal Analysis Conference, 1986:1160-1167. |
76 | RAO D. Electrodynamic interaction between a resonating structure and an exciter[C]∥Proceedings of the 5th International Modal Analysis Conference, 1987:1142-1150. |
77 | LANG G. Electrodynamic shaker fundamentals[J]. Sound and Vibration, 1997, 31: 14-23. |
78 | LANG G F, SNYDER D. Understanding the physics of electrodynamic shaker performance[J]. Sound and Vibration, 2001, 35(10): 24-33. |
79 | SARASWAT A, TIWARI N. Modeling and study of nonlinear effects in electrodynamic shakers[J]. Mechanical Systems and Signal Processing, 2017, 85: 162-176. |
80 | OLIVEIRA L, VAROTO P. The effects of armature rotation on data quality in base driven shaker testing[C]∥ISMA 27-International Conference on Noise and Vibration Engineering. 2002. |
81 | WAIMER S, MANZATO S, PEETERS B, et al. A multiphysical modelling approach for virtual shaker testing correlated with experimental test results[M]∥ Special Topics in Structural Dynamics, Volume 6. Cham: Springer International Publishing, 2016: 87-99. |
82 | HOFFAIT S, MARIN F, SIMON D, et al. Measured-based shaker model to virtually simulate vibration sine test[J]. Mechanical Systems and Signal Processing, 2016, 4: 1-7. |
83 | HOFFAIT S, MARIN F, SIMON D, et al. Virtual shaker testing at V2i: Measured-based shaker model and industrial test case[C]∥Proceedings of 27th International Conference on Noise and Vibration Engineering and International Conference on Uncertainty in Structural Dynamics, 2016: 1013-1026. |
84 | ZUO S G, FENG Z Y, PAN J, et al. Electromechanical coupling dynamic modeling and analysis of vertical electrodynamic shaker considering low frequency lateral vibration[J]. Advances in Mechanical Engineering, 2020, 12(10): 168781402096385. |
85 | RAO D K, DILL J, ZORZI E. Magnetic suspension characteristics of electromagnetic actuators[R]. 1993. |
86 | TOMLINSON G. A simple theoretical and experimental study of the force characteristics from electrodynamic exciters on linear and nonlinear systems[C]∥Proceedings of the 5th International Modal Analysis Conference, 1987. |
87 | VAROTO P S, DE OLIVEIRA L P R. Interaction between a vibration exciter and the structure under test[J]. Sound and Vibration, 2002, 36(10): 20-26. |
88 | VAROTO P S, DE OLIVEIRA L P R. On the force drop off phenomenon in shaker testing in experimental modal analysis[J]. Shock and Vibration, 2002, 9(4-5): 165-175. |
89 | DE OLIVEIRA L P R, VAROTO P S, PERES M A S. Shaker structure interaction: Overview and updated results[C]∥Proceeding of 18th International Congress on Sound and Vibration, 2011: 2516-2523. |
90 | PACINI B R, KUETHER R J, ROETTGEN D R. Shaker-structure interaction modeling and analysis for nonlinear force appropriation testing[J]. Mechanical Systems and Signal Processing, 2022, 162: 108000 |
91 | ZHANG G W, WANG X C, YANG Z C. Study on excitation force characteristics in a coupled shaker-structure system considering structure modes coupling[J]. Chinese Journal of Aeronautics, 2022, 35(7): 227-245. |
92 | DARGAH M. Effects of the shaker impedance and transducer cross-axis sensitivity in frequency response function estimation[D]. Cincinnati :University of Cincinnati, 2012. |
93 | DARGAH M H P, ALLEMANG R J, PHILLIPS A W. Exciter impedance and cross-axis sensor sensitivity issues in FRF estimation[C]∥Topics in Modal Analysis I, Volume 5. New York: Springer, 2012: 535-545. |
94 | PERES M, KALLMEYER C, WITTER M C, et al. Advantages of Multiple-Input Multiple-Output (MIMO) testing using low level excitation systems[C]∥Proceedings of the 26th International Conference on Noise and Vibration Engineering, 2014. |
95 | PERES M, KALLMEYER C, WITTER M C, et al. Advantages of multiple-input multiple-output testing[J]. Sound and Vibration, 2015, 49(8): 8-12. |
96 | MAYES R, ANKERS L, DABORN P, et al. Optimization of shaker locations for multiple shaker environmental testing[J]. Experimental Techniques, 2020, 44(3): 283-297. |
97 | 张忠, 高博, 原凯, 等. 电磁激振器建模与实时控制方法研究[J]. 强度与环境, 2018, 45(5): 25-31. |
ZHANG Z, GAO B, YUAN K, et al. Modeling and real-time control method for electromagnetic exciter[J]. Structure and Environment Engineering, 2018, 45(5): 25-31 (in Chinese). | |
98 | SCHULTZ R. Vibration test design with integrated shaker electro-mechanical models[C]∥Dynamic Substructures, Volume 4. Cham: Springer, 2021: 63-72. |
99 | ZHANG G W, LI W G, WANG X C, et al. Influence of flexible structure vibration on the excitation forces delivered by multiple electrodynamic shakers[J]. Mechanical Systems and Signal Processing, 2022, 169: 108753. |
100 | MA C J, WU Z G, YANG C. Mechanical characteristics of electromagnetic shakers and its force control[C]∥Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
101 | 王彬文, 宋巧治, 陈浩宇. 高超声速飞行器地面颤振评估技术研究[J]. 南京航空航天大学学报, 2022, 54(5): 899-907. |
WANG B W, SONG Q Z, CHEN H Y. Study on ground flutter test method for Hypersonic vehicle[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(5): 899-907 (in Chinese). | |
102 | 许云涛, 吴志刚, 杨超. 地面颤振模拟试验仿真研究[C]∥第十三届全国空气弹性学术交流会论文集, 2013:404-409. |
XU Y T, WU Z G, YANG C. Studies on simulation of the ground flutter simulation test[C]∥Proceedings of the 13th National Aero-elasticity Academic Exchange Conference, 2013: 404-409 (in Chinese). | |
103 | 徐朝阳. 大展弦比机翼颤振及状态监测研究[D]. 南京: 南京航空航天大学, 2016. |
XU C Y. Research on flutter and condition monitoring of high-aspect-ratio wing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese). |
[1] | . Reduced-order modeling of geometrically nonlinear structures and aeroelastic analysis for large flexible wing [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[2] | . Review of maneuver load analysis and alleviation technology of flexible aircraft [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[3] | . Research Progress of Ground Flutter Simulation Test Technology [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[4] | WANG Xinjiang, LIU Ziqiang, GUO Li, FU Zhichao, LYU Jinan. Analysis method for flutter mode indicator based on principle of work and power [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 224920-224920. |
[5] | LEI Pengxuan, YU Li, CHEN Dehua, LYU Binbin. Influence of flight control law on body freedom flutter characteristics: Experimental study [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 124378-124378. |
[6] | CHEN Senlin, GAO Zhenghong, ZHU Xinqi, PANG Chao, DU Yiming, CHEN Shusheng. Unsteady aerodynamic modeling of unstable dynamic process [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 123675-123675. |
[7] | LI Qiuyan, LI Gang, WEI Yangtian, RAN Yuguo, WU Bo, TAN Guanghui, LI Yan, CHEN Shi, LEI Boqi, XU Qinwei. Review of aeroelasticity design for advanced fighter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523430-523430. |
[8] | XIAO Yu. Prediction of critical continuous gust load based on adaptive stochastic optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522383-522383. |
[9] | TAN Weiwei, YAN Hong, NIE Zhijun, MA Tuliang, LIANG Yihua. Propulsion performance simulation of turbofan engine for large civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522428-522428. |
[10] | LIU Nan, GUO Chengpeng, BAI Junqiang. Efficient prediction approach of transonic flutter based on high-order harmonic balance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(10): 121989-121989. |
[11] | CHEN Senlin, GAO Zhenghong, RAO Dan. Unsteady aerodynamics modeling method using Volterra series based on multiwavelet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(1): 121379-121379. |
[12] | HE Fei, HONG Guanxin, LIU Hai, DAN Dan, WANG Ming. Efficient transonic static aeroelastic analysis method based on high accuracy modal aerodynamics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(11): 121157-121157. |
[13] | LI Guojun, BAI Junqiang, TANG Changhong, LIU Nan, QIAO Lei. Characteristics of laminar separation flutter of two-dimensional airfoils at low Reynolds numbers [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(11): 121280-121280. |
[14] | GUO Tongbiao, BAI Junqiang, SUN Zhiwei, WANG Chen. Aeroelastic modeling and analysis of wings considering geometric nonlinearity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(11): 121351-121351. |
[15] | ZHANG Weiwei, GAO Yiqi, QUAN Jinlou, SU Dan. Characteristics analysis of forced vibration response of mistuned cascades [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(9): 521018-521018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341