ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (4): 126329-126329.doi: 10.7527/S1000-6893.2021.26329
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Xiaoyu LIU1, Liguo SUN1,2, Wenqian TAN1,2(), Jinpeng WEI3, Weijun WANG1, Junkai JIAO1
Received:
2021-09-06
Revised:
2021-10-06
Accepted:
2021-10-25
Online:
2023-02-25
Published:
2021-11-10
Contact:
Wenqian TAN
E-mail:tanwenqian@buaa.edu.cn
Supported by:
CLC Number:
Xiaoyu LIU, Liguo SUN, Wenqian TAN, Jinpeng WEI, Weijun WANG, Junkai JIAO. Modeling and evaluation of carrier aircraft pilots based on similar configuration decisions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126329-126329.
Table 1
Model-related parameters and CAP values of 25 configurations
构型 | 模型参数 | CAP | 飞行品质等级 | |||
---|---|---|---|---|---|---|
1 | -105.86 | 0.20 | 11.19 | 0.30 | 6.00 | 2 |
2 | -105.61 | -2.66 | 11.19 | 0.45 | 6.00 | 2 |
3 | -105.26 | -7.55 | 11.20 | 0.71 | 6.00 | 2 |
4 | -104.84 | -13.18 | 11.20 | 1.00 | 6.00 | 2 |
5 | -103.83 | -24.55 | 11.20 | 1.60 | 6.00 | 2 |
6 | -35.83 | -1.12 | 6.46 | 0.30 | 2.00 | 2 |
7 | -35.68 | -2.77 | 6.46 | 0.45 | 2.00 | 1 |
8 | -35.45 | -5.60 | 6.46 | 0.71 | 2.00 | 1 |
9 | -35.18 | -8.82 | 6.46 | 1.00 | 2.00 | 1 |
10 | -34.60 | -15.41 | 6.46 | 1.60 | 2.00 | 2 |
11 | -11.13 | -0.93 | 3.50 | 0.30 | 0.59 | 2 |
12 | -11.05 | -1.82 | 3.50 | 0.45 | 0.59 | 1 |
13 | -10.92 | -3.35 | 3.50 | 0.71 | 0.59 | 1 |
14 | -10.77 | -5.09 | 3.50 | 1.00 | 0.59 | 1 |
15 | -10.45 | -8.66 | 3.50 | 1.60 | 0.59 | 2 |
16 | -5.79 | -0.66 | 2.42 | 0.30 | 0.28 | 2 |
17 | -5.73 | -1.28 | 2.42 | 0.45 | 0.28 | 1 |
18 | -5.64 | -2.33 | 2.42 | 0.71 | 0.28 | 1 |
19 | -5.54 | -3.54 | 2.42 | 1.00 | 0.28 | 1 |
20 | -5.32 | -6.01 | 2.42 | 1.60 | 0.28 | 2 |
21 | -2.49 | -0.30 | 1.37 | 0.30 | 0.09 | 2 |
22 | -2.46 | -0.65 | 1.37 | 0.45 | 0.09 | 2 |
23 | -2.41 | -1.25 | 1.37 | 0.71 | 0.09 | 2 |
24 | -2.35 | -1.94 | 1.37 | 1.00 | 0.09 | 2 |
25 | -2.25 | -3.34 | 1.37 | 1.60 | 0.09 | 2 |
Table 4
Pilot model library corresponding to aircraft type
构型 | ||||||
---|---|---|---|---|---|---|
1 | 0 | 41.385 | 0.001 | 11.711 | 1.070 | 0.992 7 |
2 | 0 | 42.876 | 0.001 | 19.338 | 1.576 | 0.992 7 |
3 | 0 | 41.566 | 0.001 | 10.194 | 25.000 | 0.992 5 |
4 | 0 | 38.432 | 0.001 | 8.072 | 0.979 | 0.991 7 |
5 | 0 | 37.128 | 0.001 | 12.455 | 1.890 | 0.991 9 |
6 | 0 | 22.705 | 0.001 | 23.510 | 0.832 | 0.990 7 |
7 | 0 | 46.395 | 0.001 | 0.001 | 0.602 | 0.992 0 |
8 | 0 | 32.934 | 0.001 | 14.404 | 25.000 | 0.992 5 |
9 | 0 | 31.830 | 0.001 | 12.956 | 2.441 | 0.992 6 |
10 | 1 | 496.197 | 25.000 | 25.000 | 0.992 9 | |
11 | 0 | 15.293 | 0.002 | 0.001 | 25.000 | 0.988 6 |
12 | 0 | 16.943 | 0.002 | 0.001 | 25.000 | 0.988 8 |
13 | 0 | 20.553 | 0.002 | 0.001 | 25.000 | 0.989 3 |
14 | 1 | 13.614 | 1.378 | 25.000 | 0.985 9 | |
15 | 1 | 26.520 | 1.629 | 25.000 | 0.989 7 | |
16 | 1 | 4.687 | 1.818 | 25.000 | 0.964 0 | |
17 | 1 | 3.441 | 1.234 | 25.000 | 0.956 3 | |
18 | 1 | 11.026 | 1.419 | 25.000 | 0.984 5 | |
19 | 1 | 12.843 | 2.214 | 25.000 | 0.986 3 | |
20 | 1 | 18.158 | 1.328 | 25.000 | 0.987 0 | |
21 | 2 | 9.469 | 25.000 | 0.429 | 25.000 | 0.990 8 |
22 | 2 | 10.739 | 25.000 | 0.466 | 24.999 | 0.989 2 |
23 | 2 | -11.250 | 25.000 | 0.540 | 25.000 | 0.988 2 |
24 | 2 | 19.540 | 25.000 | 25.000 | 0.452 | 0.992 2 |
25 | 1 | 9.783 | 1.492 | 25.000 | 0.980 7 |
Table 5
Values of configuration parameters to be predicted
序号 | 短周期频率/(rad·s-1) | 短周期阻尼比 | CAP | ||
---|---|---|---|---|---|
-16.262 9 | -4.062 8 | 4.325 2 | 0.708 4 | 0.895 3 | |
-8.076 2 | -2.066 4 | 2.954 1 | 0.550 9 | 0.417 7 | |
-7.941 9 | -3.577 9 | 2.953 6 | 0.852 0 | 0.417 5 | |
-51.817 7 | -15.745 2 | 7.896 9 | 1.403 3 | 2.984 6 | |
-3.854 4 | -0.553 8 | 1.878 9 | 0.320 1 | 0.169 0 | |
-21.562 6 | -3.253 1 | 4.995 4 | 0.550 8 | 1.194 3 | |
-21.335 4 | -5.808 1 | 4.994 3 | 0.851 8 | 1.193 8 | |
-3.546 6 | -4.015 8 | 1.877 0 | 1.405 1 | 0.168 6 | |
-53.110 7 | -1.201 9 | 7.901 4 | 0.320 3 | 2.988 0 |
1 | YU Y, WANG H L, LI N, et al. Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer[J]. Aerospace Science and Technology, 2017, 69: 149-160. |
2 | ZHEN Z Y, YU C J, JIANG S Y, et al. Adaptive super-twisting control for automatic carrier landing of aircraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 984-997. |
3 | 张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报, 2021, 42(8): 525840. |
ZHANG Z B, ZHANG X L, WANG J X, et al. An IDLC landing control method of carrier-based aircraft based on control allocation of multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525840 (in Chinese). | |
4 | 石明, 屈香菊, 王萌辉. 甲板运动对舰载机人工着舰的影响和补偿[J]. 飞行力学, 2006, 24(1): 5-8. |
SHI M, QU X J, WANG M H. The influence and compensation of deck motion in carrier landing approach[J]. Flight Dynamics, 2006, 24(1): 5-8 (in Chinese). | |
5 | 张永花. 舰载机着舰过程甲板运动建模及补偿技术研究[D]. 南京: 南京航空航天大学, 2012. |
ZHANG Y H. Research on deck motion modeling and deck motion compensation for carrier landing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
6 | 梁磊, 肖静, 詹光, 等. 考虑杆臂效应与挠曲变形的全自动着舰技术[J]. 航空学报, 2021, 42(8): 525841. |
LIANG L, XIAO J, ZHAN G, et al. Automatic landing technology considering lever arm effect and flexural deformation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525841 (in Chinese). | |
7 | CHERRY B E, CONSTANTINO M M. The burble effect: Superstructure and flight deck effects on carrier air wake: AD-A527798[R]. Annapolis: United States Naval Academy, 2010. |
8 | KELLY M F, WHITE M D, OWEN I, et al. The queen Elizabeth class aircraft carriers: Airwake modelling and validation for ASTOVL flight simulation[C]∥Launch and Recovery Symposium, American Society of Naval Engineers. Baltimore:American Society of Naval Engineers, 2016: 1-13. |
9 | 罗飞, 张军红, 王博, 等. 基于直接升力与动态逆的舰尾流抑制方法[J]. 航空学报, 2021, 42(12): 124770. |
LUO F, ZHANG J H, WANG B, et al. Air wake suppression method based on direct lift and nonlinear dynamic inversion control[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124770 (in Chinese). | |
10 | EFREMOV A, EFREMOV E, TIAGLIK M. Advancements in predictions of flying qualities, pilot-induced oscillation tendencies, and flight safety[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(1): 4-14. |
11 | DREWIACKI D, SILVESTRE F J, GUIMARÃES A B. A new handling qualities criterion for pilot-augmented oscillations: AIAA-2020-0282[R]. Reston: AIAA, 2020. |
12 | JONES M, BARNETT M. Analysis of rotorcraft pilot-induced oscillations triggered by active inceptor failures: AIAA-2019-0104[R]. Reston: AIAA, 2019. |
13 | DREWIACKI D, SILVESTRE F J, GUIMARÃES NETO A B. Influence of airframe flexibility on pilot-induced oscillations[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(7): 1537-1550. |
14 | 王永庆, 罗云宝, 王奇涛, 等. 面向机舰适配的舰载飞机起降特性分析[J]. 航空学报, 2016, 37(1): 269-277. |
WANG Y Q, LUO Y B, WANG Q T, et al. Carrier suitability-oriented launch and recovery characteristics of piloted carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 269-277 (in Chinese). | |
15 | MULDER M, POOL D M, ABBINK D A, et al. Manual control cybernetics: State-of-the-art and current trends[J]. IEEE Transactions on Human-Machine Systems, 2018, 48(5): 468-485. |
16 | HOSMAN R, VAN DER GEEST P, VAN DER ZEE J. Development of a pilot model for the manual balked landing maneuver: AIAA-2009-5818[R]. Reston: AIAA, 2009. |
17 | LONE M, COOKE A. Review of pilot models used in aircraft flight dynamics[J]. Aerospace Science and Technology, 2014, 34: 55-74. |
18 | 王淼, 肖刚, 王国庆. 单一飞行员驾驶模式技术[J]. 航空学报, 2020, 41(4): 323541. |
WANG M, XIAO G, WANG G Q. Single pilot operation mode technology[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 323541 (in Chinese). | |
19 | 许舒婷, 谭文倩, 屈香菊. 飞机力提示智能侧杆控制器设计方法[J]. 航空学报, 2021, 42(8): 525775. |
XU S T, TAN W Q, QU X J. Design method of aircraft smart side-stick controller with force cue[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525775 (in Chinese). | |
20 | HESS R A. Structural model of the adaptive human pilot[J]. Journal of Guidance and Control, 1980, 3(5): 416-423. |
21 | HESS R A, WATSON D C. Cross coupling in pilot-vehicle systems[J]. Journal of Guidance and Control, 1986, 9(6): 614-620. |
22 | HESS R A, KALTEIS R M. Technique for predicting longitudinal pilot-induced oscillations[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(1): 198-204. |
23 | HESS R A. Unified theory for aircraft handling qualities and adverse aircraft-pilot coupling[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(6): 1141-1148. |
24 | BACHELDER E N, HESS R A, GODFROY-COOPER M, et al. Linking the pilot structural model and pilot workload: AIAA-2018-0533[R]. Reston: AIAA, 2018. |
25 | HESS R A. Analysis of the aircraft carrier landing task, pilot + augmentation/automation[J]. IFAC-PapersOnLine, 2019, 51(34): 359-365. |
26 | CHEN C, TAN W Q, QU X J, et al. A fuzzy human pilot model of longitudinal control for a carrier landing task[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 453-466. |
27 | 刘嘉, 向锦武, 张颖, 等. 舰载机着舰下滑段飞行员操纵策略研究[J]. 动力学与控制学报, 2018, 16(1): 87-96. |
LIU J, XIANG J W, ZHANG Y, et al. Research on piloting principle in carrier landing[J]. Journal of Dynamics and Control, 2018, 16(1): 87-96 (in Chinese). | |
28 | 谭文倩, EFREMOV A V, 屈香菊. 一种预测驾驶员操纵行为的建模方法[J]. 北京航空航天大学学报, 2010, 36(10): 1140-1144. |
TAN W Q, EFREMOV A V, QU X J. Approach of pilot modeling for predicting pilot control behavior[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10): 1140-1144 (in Chinese). | |
29 | MCRUER D T, KRENDEL E S. Mathematical models of human pilot behavior[R]. Neuilly sur Seine: North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development,1974. |
30 | Defense Quality and Standardization Office. Flying qualities of piloted aircraft: MIL-H [S]. Washington, D. C.: Department of Defense, 1997. |
31 | ANDERSON M. Inner and outer loop manual control of carrier aircraft landing: AIAA-1996-3877[R]. Reston: AIAA, 1996. |
[1] | HU Wei, WAN Wenzhang, CHEN Mou. Neural network and disturbance observer based control for automatic carrier landing of UAV [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 726963-726963. |
[2] | LUO Fei, ZHANG Junhong, WANG Bo, TANG Ruilin, TANG Wei. Air wake suppression method based on direct lift and nonlinear dynamic inversion control [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 124770-124770. |
[3] | ZUO Xianshuai, WANG Lixin, LIU Hailiang, WANG Yun, ZHANG Yu. Similarity for simulating automatic carrier landing process of full-scale aircraft with scaled-model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(12): 123005-123005. |
[4] | LI Xu, ZHU Xiaoping, ZHOU Zhou, GUO Jiahao. Numerical simulation of flow field during landing for carrier-based aircraft near a moving base [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(12): 122131-122131. |
[5] | ZHEN Ziyang, WANG Xinhua, JIANG Ju, YANG Yidong. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(2): 20435-020435. |
[6] | LIU Jia, XIANG Jinwu, ZHANG Ying, SUN Yang, XIAO Chuwan. Research and application of adaptive optimal control pilot model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(4): 1127-1138. |
[7] | ZHOU Xin, PENG Rongkun, YUAN Suozhong. Prediction and Compensation for Vertical Motion of Ideal Touchdown Point in Carrier Landing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(7): 1663-1669. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341