ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (7): 25357.doi: 10.7527/S1000-6893.2021.25357
• Reviews • Previous Articles Next Articles
LIU Qiang1,2, TU Guohua1, LUO Zhenbing2, CHEN Jianqiang1, ZHAO Rui3, YUAN Xianxu1
Received:
2021-02-04
Revised:
2021-04-09
Online:
2022-07-15
Published:
2021-04-08
Supported by:
CLC Number:
LIU Qiang, TU Guohua, LUO Zhenbing, CHEN Jianqiang, ZHAO Rui, YUAN Xianxu. Progress in hypersonic boundary layer transition delay control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 25357.
[1] 甄华萍,蒋崇文.高超声速技术验证飞行器HTV-2综述[J].飞航导弹, 2013(6):7-13. ZHEN H P, JIANG C W. Review of hypersonic flight validation vehicles-HTV-2[J]. Aerodynamic Missile Journal, 2013(6):7-13(in Chinese). [2] 周恒,张涵信.有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J].空气动力学学报, 2017, 35(2):151-155. ZHOU H, ZHANG H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2):151-155(in Chinese). [3] 余平,段毅,尘军.高超声速飞行的若干气动问题[J].航空学报, 2015, 36(1):7-23. YU P, DUAN Y, CHEN J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):7-23(in Chinese). [4] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014. [5] LIU Q, LUO Z B, WANG L, et al. Direct numerical simulations of supersonic turbulent boundary layer with streamwise-striped wall blowing[J]. Aerospace Science and Technology, 2021, 110:106510. [6] BERTIN J J, CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38:129-157. [7] WHITEHEAD A. NASP aerodynamics:AIAA-1989-5013[R]. Reston:AIAA, 1989. [8] SCHNEIDER S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight:the role of quiet tunnels[J]. Progress in Aerospace Sciences, 2015, 72:17-29. [9] 罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1):357-372. LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372(in Chinese). [10] 陈坚强,涂国华,张毅锋,等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition:What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337(in Chinese). [11] 陈坚强,袁先旭,涂国华,等.高超声速边界层转捩的几点认识[J].中国科学:物理学力学天文学, 2019, 49(11):125-138. CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica (Physica, Mechanica&Astronomica), 2019, 49(11):125-138(in Chinese). [12] 杨武兵,沈清,朱德华,等.高超声速边界层转捩研究现状与趋势[J].空气动力学学报, 2018, 36(2):183-195. YANG W B, SHEN Q, ZHU D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2):183-195(in Chinese). [13] 苏彩虹.高超声速边界层转捩预测中的关键科学问题:感受性、扰动演化及转捩判据研究进展[J].空气动力学学报, 2020, 38(2):355-367. SU C H. Progress in key scientific problems of hypersonic bounary-layer transition prediction:Receptivity, evolution of disturbances and transition criterion[J]. Acta Aerodynamica Sinica, 2020, 38(2):355-367(in Chinese). [14] LEE C B, JIANG X Y. Flow structures in transitional and turbulent boundary layers[J]. Physics of Fluids, 2019, 31(11):111301. [15] LEE C B, CHEN S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review, 2019, 6(1):155-170. [16] ZHU Y D, LEE C B, CHEN X, et al. Newly identified principle for aerodynamic heating in hypersonic flows[J]. Journal of Fluid Mechanics, 2018, 855:152-180. [17] ZHU Y D, GU D W, ZHU W K, et al. Dilatational-wave-induced aerodynamic cooling in transitional hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2021, 911:A36. [18] 易仕和,刘小林,陆小革,等. NPLS技术在高超声速边界层转捩研究中的应用[J].空气动力学学报, 2020, 38(2):348-354, 378. YI S H, LIU X L, LU X G, et al. Application of NPLS technique in the researches on hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2):348-354, 378(in Chinese). [19] 段毅,姚世勇,李思怡,等.高超声速边界层转捩的若干问题及工程应用研究进展综述[J].空气动力学学报, 2020, 38(2):391-403. DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2):391-403(in Chinese). [20] 李志文,袁海涛,黄斌,等.从总体设计角度透视高超声速飞行器边界层转捩问题[J].空气动力学学报, 2021, 39(4):26-38. LI Z W, YUAN H T, HUANG B, et al. The hypersonic boundary-layer transition:A perspective from the view of system design[J]. Acta Aerodynamica Sinica, 2021, 39(4):26-38(in Chinese). [21] MACK L M. Boundary-layer stability theory[M]//MICHEL R. Special course on stability and transition of laminar flow. Paris:AGARD, 1984:1-81. [22] FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43:79-95. [23] LIU X L, YI S H, XU X W, et al. Experimental study of second-mode wave on a flared cone at Mach 6[J]. Physics of Fluids, 2019, 31(7):074108. [24] 徐国亮,符松.可压缩横流失稳及其控制[J].力学进展, 2012, 42(3):262-273. XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273(in Chinese). [25] 任杰.高超声速边界层G rtler涡二次失稳和转捩控制研究[D].北京:清华大学, 2015. REN J. Secondary instabilities of G rtler vortices in high-speed boundary layers and control on flow transition[D]. Beijing:Tsinghua University, 2015(in Chinese). [26] 陈曦.高超声速边界层转捩问题研究[D].北京:北京大学,2018. CHEN X. Study on hypersonic boundary layer transition[D]. Beijing:Peking University, 2018(in Chinese). [27] 陈坚强,涂国华,万兵兵,等. HyTRV流场特征与边界层稳定性特征分析[J].航空学报, 2021, 42(6):124317. CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6):124317(in Chinese). [28] KIMMEL R. Aspects of hypersonic boundary layer transition control:AIAA-2003-0772[R]. Reston:AIAA, 2003. [29] 董昊,刘是成,程克明.粗糙元对高超声速边界层转捩影响的研究进展[J].实验流体力学, 2018, 32(6):1-15. DONG H, LIU S C, CHENG K M. Review of hypersonic boundary layer transition induced by roughness elements[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6):1-15(in Chinese). [30] SCHNEIDER S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2):193-209. [31] STERRETT J R, HOLLOWAY P F. Effects of controlled roughness on boundary-layer transition at a Mach number of 6[J]. AIAA Journal, 1963, 1(8):1951-1953. [32] HOLLOWAY P F, STERRETT J R. Effect of controlled surface roughness on boundary-layer transition and heat transfer at mach numbers of 4.8 and 6.0:NASA TN D-2054[R]. Washington, D.C.:NASA, 1964. [33] FEDOROV A. Receptivity of hypersonic boundary layer to acoustic disturbances scattered by surface roughness:AIAA-2003-3731[R]. Reston:AIAA, 2003. [34] MARXEN O, IACCARINO G, SHAQFEH E S G. Disturbance evolution in a Mach 4.8 boundary-layer with two-dimensional roughness-induced separation and shock[J]. Journal of Fluid Mechanics, 2010, 648:435-469. [35] DUAN L, WANG X W, ZHONG X L. A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness[J]. Journal of Computational Physics, 2010, 229:7207-7237. [36] ZHONG X L, WANG X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44:527-561. [37] DUAN L, WANG X W, ZHONG X L. Stabilization of a Mach 5.92 boundary layer by two-dimensional finite-height roughness[J]. AIAA Journal, 2013, 51(1):266-270. [38] FONG K D, WANG X W, ZHONG X L. Numerical simulation of roughness effect on the stability of a hypersonic boundary layer[J]. Computers&Fluids, 2014, 96:350-367. [39] FONG K D, ZHONG X L. DNS and PSE study on the stabilization effect of hypersonic boundary layer waves using 2-D surface roughness:AIAA-2016-3347[R]. Reston:AIAA, 2016. [40] 李慧.单个粗糙元对可压缩平板边界层稳定性影响的研究[D].天津:天津大学, 2014. LI H. The effect of single roughness element on the stability in a compressible boundary layer on a flat plate[D]. Tianjin:Tianjin University, 2014(in Chinese). [41] BAGHERI S, HANIFI A. The stabilizing effect of streaks on Tollmien-Schlichting and oblique waves:A parametric study[J]. Physics of Fluids, 2007, 19(7):078103. [42] PAREDES P, CHOUDHARI M, LI F. Transition delay in hypersonic boundary layers via optimal perturbations:NASA/TM-2016-219210[R]. Washington,D.C.:NASA, 2016. [43] FRANSSON J H M, TALAMELLI A, BRANDT L, et al. Delaying transition to turbulence by a passive mechanism[J]. Physical Review Letters, 2006, 96(6):064501. [44] REN J, FU S, HANIFI A. Stabilization of the hypersonic boundary layer by finite-amplitude streaks[J]. Physics of Fluids, 2016, 28:024110. [45] PAREDES P, CHOUDHARI M M, LI F. Transition delay via vortex generators in a hypersonic boundary layer at flight conditions:AIAA-2018-3217[R]. Reston:AIAA, 2018. [46] PAREDES P, CHOUDHARI M, LI F. Instability wave-streak interactions in a high Mach number boundary layer at flight conditions[J]. Journal of Fluid Mechanics, 2019, 858:474-499. [47] SARIC W S, CARRILLO R B, REIBERT M S. Leading-edge roughness as a transition control mechanism:AIAA-1998-0781[R]. Reston:AIAA, 1998. [48] REED H, SARIC W. Supersonic laminar flow control on swept wings using distributed roughness:AIAA-2002-0147[R]. Reston:AIAA, 2002. [49] RIZZETTA D P, VISBAL M R, REED H L, et al. Direct numerical simulation of discrete roughness on a swept-wing leading edge[J]. AIAA Journal, 2010, 48(11):2660-2673. [50] SCHUELE C Y, CORKE T C, MATLIS E. Control of stationary crossflow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[J]. Journal of Fluid Mechanics, 2013, 718:5-38. [51] CORKE T, ARNDT A, MATLIS E, et al. Control of stationary cross-flow modes in a Mach 6 boundary layer using patterned roughness[J]. Journal of Fluid Mechanics, 2018, 856:822-849. [52] OWENS L R, BEELER G B, BALAKUMAR P, et al. Flow disturbance and surface roughness effects on cross-flow boundary-layer transition in supersonic flows:AIAA-2014-2638[R]. Reston:AIAA, 2014. [53] SARIC W S, WEST D E, TUFTS M W, et al. Experiments on discrete roughness element technology for swept-wing laminar flow control[J]. AIAA Journal, 2019, 57(2):641-654. [54] CARPENTER A. In-flight receptivity experiments on a 30-degree swept-wing using micron-sized discrete roughness elements[D]. College Station:Texas A&M University, 2009. [55] LEES L, GOLD H. Stability of laminar boundary layers and wakes at hypersonic speeds. Part 1:Stability of laminar wakes[C]//Proceedings of the International Symposium on Fundamental Phenomena in Hypersonic Flows, 1966. [56] LYSENKO V I. Experimental studies of stability and transition in high-speed wakes[J]. Journal of Fluid Mechanics, 1999, 392:1-26. [57] FUJII K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4):731-738. [58] NOVIKOV A, EGOROV I, FEDOROV A. Direct numerical simulation of supersonic boundary layer stabilization using grooved wavy surface:AIAA-2010-1245[R]. Reston:AIAA, 2010. [59] BOUNTIN D, CHIMITOV T, MASLOV A, et al. Stabilization of a hypersonic boundary layer using a wavy surface[J]. AIAA Journal, 2013, 51(5):1203-1210. [60] ZHOU Y L, LIU W, CHAI Z X, et al. Numerical simulation of wavy surface effect on the stability of a hypersonic boundary layer[J]. Acta Astronautica, 2017, 140:485-496. [61] SI W F, HUANG G L, ZHU Y D, et al. Hypersonic aerodynamic heating over a flared cone with wavy wall[J]. Physics of Fluids, 2019, 31(5):051702. [62] ZHU W K, SHI M T, ZHU Y D, et al. Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone[J]. Physics of Fluids, 2020, 32(1):011701. [63] MALMUTH N, FEDOROV A, SHALAEV V, et al. Problems in high speed flow prediction relevant to control:AIAA-1998-2695[R]. Reston:AIAA, 1998. [64] FEDOROV A V, MALMUTH N D, RASHEED A, et al. Stabilization of hypersonic boundary layers by porous coatings[J]. AIAA Journal, 2001, 39(4):605-610. [65] FEDOROV A, SHIPLYUK A, MASLOV A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics, 2003, 479:99-124. [66] CHOKANI N, BOUNTIN D A, SHIPLYUK A N, et al. Nonlinear aspects of hypersonic boundary-layer stability on a porous surface[J]. AIAA Journal, 2005, 43(1):149-155. [67] SANDHAM N D, LVDEKE H. A numerical study of Mach 6 boundary layer stabilization by means of a porous surface:AIAA-2009-1288[R]. Reston:AIAA, 2009. [68] DE TULLIO N, SANDHAM N D. Direct numerical simulation of breakdown to turbulence in a Mach 6 boundary layer over a porous surface[J]. Physics of Fluids, 2010, 22(9):094105. [69] BRōS G A, INKMAN M, COLONIUS T, et al. Second-mode attenuation and cancellation by porous coatings in a high-speed boundary layer[J]. Journal of Fluid Mechanics, 2013, 726:312-337. [70] TRITARELLI R C, LELE S K, FEDOROV A. Stabilization of a hypersonic boundary layer using a felt-metal porous coating[J]. Journal of Fluid Mechanics, 2015, 769:729-739. [71] LUKASHEVICH S V, MOROZOV S O, SHIPLYUK A N. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer.1.Effect of the porous coating length[J]. Journal of Applied Mechanics and Technical Physics, 2013, 54(4):572-577. [72] LUKASHEVICH S V, MOROZOV S O, SHIPLYUK A N. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer 2. Effect of the porous coating location[J]. Journal of Applied Mechanics and Technical Physics, 2016, 57(5):873-878. [73] LUKASHEVICH S V, MOROZOV S O, SHIPLYUK A N. Passive porous coating effect on a hypersonic boundary layer on a sharp cone at small angle of attack[J]. Experiments in Fluids, 2018, 59:130. [74] SOUSA V C B, PATEL D, CHAPELIER J B, et al. Numerical investigation of second-mode attenuation over carbon/carbon porous surfaces[J]. Journal of Spacecraft and Rockets, 2019, 56(2):319-332. [75] SCALO C, SOUSA V, BOSE R. Numerical investigation of hypersonic turbulence transition control via complex wall impedance:AIAA-2019-2151[R]. Reston:AIAA, 2019. [76] FIEVET R, DENIAU H, BRAZIER J P, et al. Numerical study of hypersonic boundary-layer transition delay through second-mode absorption:AIAA-2020-2061[R]. Reston:AIAA, 2020. [77] MASLOV A. Experimental and theoretical studies of hypersonic laminar flow control using ultrasonically absorptive coatings (UAC):ISTC 2172-2001[R]. Moscow:International Science and Technology Center, 2003. [78] WANG X W, ZHONG X L. Numerical Simulations on mode S growth over feltmetal and regular porous coatings of a Mach 5.92 flow:AIAA-2011-0375[R]. Reston:AIAA, 2011. [79] WAGNER A, KUHN M, MARTINEZ SCHRAMM J, et al. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure[J]. Experiments in Fluids, 2013, 54(10):1-10. [80] 朱德华,刘智勇,袁湘江.多孔表面推迟高超声速边界层转捩的机理[J].计算物理, 2016, 33(2):163-169. ZHU D H, LIU Z Y, YUAN X J. Mechanism of transition delay by porous surface in hypersonic boundary layers[J]. Chinese Journal of Computational Physics, 2016, 33(2):163-169(in Chinese). [81] 涂国华,陈坚强,袁先旭,等.多孔表面抑制第二模态失稳的最优开孔率和孔半径分析[J].空气动力学学报, 2018, 36(2):273-278. TU G H, CHEN J Q, YUAN X X, et al. Optimal porosity and pore radius of porous surfaces for damping the second-mode instability[J]. Acta Aerodynamica Sinica, 2018, 36(2):273-278(in Chinese). [82] ZHAO R, LIU T, WEN C Y, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J]. AIAA Journal, 2018, 56(8):2942-2946. [83] ZHAO R, ZHANG X X, WEN C Y. Theoretical modeling of porous coatings with simple microstructures for hypersonic boundary-layer stabilization[J]. AIAA Journal, 2020, 58(2):981-986. [84] TIAN X, ZHAO R, LONG T, et al. Reverse design of ultrasonic absorptive coating for the stabilization of Mack modes[J]. AIAA Journal, 2019, 57(6):2264-2269. [85] ZHAO R, LIU T, WEN C Y, et al. Impedance-near-zero acoustic metasurface for hypersonic boundary-layer flow stabilization[J]. Physical Review Applied, 2019, 11(4):044015. [86] 赵瑞,严昊,席柯,等.声学超表面抑制第一模态研究[J].航空科学技术, 2020, 31(11):104-112. ZHAO R, YAN H, XI K, et al. Research on acoustic metasurfaces for the suppression of the first mode[J]. Aeronautical Science&Technology, 2020, 31(11):104-112(in Chinese). [87] ZHU W K, CHEN X, ZHU Y D, et al. Nonlinear interactions in the hypersonic boundary layer on the permeable wall[J]. Physics of Fluids, 2020, 32(10):104110. [88] 郭启龙,涂国华,陈坚强,等.横向矩形微槽对高超边界层失稳的控制作用[J].航空动力学报, 2020, 35(1):135-143. GUO Q L, TU G H, CHEN J Q, et al. Control of hypersonic boundary layer instability by transverse rectangular micro-cavities[J]. Journal of Aerospace Power, 2020, 35(1):135-143(in Chinese). [89] ADAM P H, HORNUNG H G. Enthalpy effects on hypervelocity boundary-layer transition:Ground test and flight data[J]. Journal of Spacecraft and Rockets, 1997, 34(5):614-619. [90] MALIK M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal, 1989, 27(11):1487-1493. [91] 赵耕夫.超音速/高超音速三维边界层的层流控制[J].力学学报, 2001, 33(4):519-524. ZHAO G F. Laminar flow control of supersonic/hypersonic three-dimensional boundary layer[J]. Acta Mechanica Sinica, 2001, 33(4):519-524(in Chinese). [92] KAZAKOV A V, KOGAN M N. Stability of subsonic laminar boundary layer on a flat plate with volume energy supply[J]. Fluid Dynamics, 1988, 23(2):211-215. [93] SOUDAKOV V, FEDOROV A, EGOROV I. Stability of high-speed boundary layer on a sharp cone with localized wall heating or cooling[J]. Progress in Flight Physics, 2015, 7:569-584. [94] FEDOROV A, SOUDAKOV V, EGOROV I, et al. High-speed boundary-layer stability on a cone with localized wall heating or cooling[J]. AIAA Journal, 2015, 53(9):2512-2524. [95] ZHAO R, WEN C Y, TIAN X D, et al. Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer[J]. International Journal of Heat and Mass Transfer, 2018, 121:986-998. [96] FEDOROV A V, RYZHOV A A, SOUDAKOV V G, et al. Numerical simulation of the effect of local volume energy supply on high-speed boundary layer stability[J]. Computers&Fluids, 2014, 100:130-137. [97] GERMAIN P. The boundary layer on a sharp cone in high-enthalpy flow[D]. Pasadena:California Institute of Technology, 1993. [98] HORNUNG H G, ADAM P H, GERMAIN P, et al. On transition and transition control in hypervelocity flows[C]//Proceedings of the Ninth Asian Congress of Fluid Mechanics, 2002. [99] LEYVA I, LAURENCE S, BEIERHOLM A, et al. Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions:AIAA-2009-1287[R]. Reston:AIAA, 2009. [100] LEYVA I, JEWELL J, LAURENCE S, et al. On the impact of injection schemes on transition in hypersonic boundary layers:AIAA-2009-7204[R]. Reston:AIAA, 2009. [101] JEWELL J, WAGNILD R, LEYVA I, et al. Transition within a hypervelocity boundary layer on a 5-degree half-angle cone in air/CO2 mixtures:AIAA-2013-0523[R]. Reston:AIAA, 2013. [102] FEDOROV A V, SOUDAKOV V, LEYVA I A. Stability analysis of high-speed boundary-layer flow with gas injection:AIAA-2014-2498[R]. Reston:AIAA, 2014. [103] GAPONOV S A, SMORODSKY B V. Control of supersonic boundary layer and its stability by means of foreign gas injection through the porous wall[J]. International Journal of Theoretical and Applied Mechanics, 2016, 1:97-103. [104] GAPONOV S A, ERMOLAEV Y G, ZUBKOV N N, et al. Investigation of the effect of heavy gas injection into a supersonic boundary layer on laminar-turbulent transition[J]. Fluid Dynamics, 2017, 52(6):769-776. [105] 刘强,罗振兵,邓雄,等.合成冷/热射流控制超声速边界层流动稳定性[J].物理学报, 2017, 66(23):222-232. LIU Q, LUO Z B, DENG X, et al. Linear stability of supersonic boundary layer with synthetic cold/hot jet control[J]. Acta Physica Sinica, 2017, 66(23):222-232(in Chinese). [106] CRAIG S A, HUMBLE R A, HOFFERTH J W, et al. Flow-field characterization of DBD plasma actuators as discrete roughness elements for laminar flow control[C]//64th Annual Meeting of the APS Division of Fluid Dynamics, 2011. [107] WANG Z F, WANG L, FU S. Sensitivity analysis of crossflow boundary layer and transition delay using plasma actuator:AIAA-2016-3933[R]. Reston:AIAA, 2016. [108] YATES H B, MATLIS E H, JULIANO T J, et al. Plasma-actuated flow control of hypersonic crossflow-induced boundary-layer transition[J]. AIAA Journal, 2020, 58(5):2093-2108. [109] MIRÓ F M, DEHAIRS P, PINNA F, et al. Effect of wall blowing on hypersonic boundary-layer transition[J]. AIAA Journal, 2019, 57(4):1567-1578. [110] KUDRYAVTSEV A, KHOTYANOVSKY D. Linear stability of supersonic boundary layer over a cooled porous surface[J]. Journal of Physics:Conference Series, 2019, 1404:012114. [111] WANG X W, ZHONG X L, MA Y B. Response of a hypersonic boundary layer to wall blowing-suction[J]. AIAA Journal, 2011, 49(7):1336-1353. [112] WANG S Z, LEI J M, ZHEN H P, et al. Numerical investigation of wall cooling and suction effects on supersonic flat-plate boundary layer transition using large eddy simulation[J]. Advances in Mechanical Engineering, 2015, 7(2):493194. [113] WANG X W, LALLANDE D. Hypersonic boundary-layer stabilization using steady blowing and suction:Effect of forcing location:AIAA-2020-2059[R]. Reston:AIAA, 2020. [114] 罗振兵,刘强,邓雄,等.一种主被动组合的超高速边界层转捩宽频控制方法:202011087796.0[P]. 2020-10-13. LUO Z B, LIU Q, DENG X, et al. A combined active and passive broadband-frequency control method for hypersonic boundary layer transition:202011087796.0[P]. 2020-10-13(in Chinese). |
[1] | Chang WANG, Long HE, Dongxia XU, Min TANG, Shuai MA, Ximing WU. Flow control drag reduction of hub on coaxial rigid rotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529084-529084. |
[2] | Wei XIE, Zhenbing LUO, Yan ZHOU, Qiang LIU, Jianjun WU, Hao DONG. Double wedge shock interaction control using steady jet in hypersonic flow: Experimental study [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128813-128813. |
[3] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[4] | Xueliang LI, Chuangchuang LI, Wei SU, Jie WU. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627-128627. |
[5] | Wenbiao GAN, Junjie ZHUANG, Jinwu XIANG, Zhenjie ZUO, Zhijie ZHAO, Zhenbing LUO. Research progress on flow control of propeller for low dynamic near⁃space vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530086-530086. |
[6] | Songbai WANG, Yuyang HAO, Yadong WU, Yong CHEN, Huawei YU, Lin DU. Research progress on rotating instability of aeroengine compressor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 29851-029851. |
[7] | Ziyun WANG, Hang YU, Yue ZHANG, Huijun TAN, Yi JIN, Xin LI. Research progress on key issues of adjustable inlet system for aerospace vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529440-529440. |
[8] | Shiqi GAO, Bo DING, Xuzhen XIE, Zheng LI, Lin CHEN, Shouyuan QIAN, Zihan JIAO, Guanghui BAI. Drag reduction mechanism using plasma synthetic jet in high⁃speed flow [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729373-729373. |
[9] | Wang WANG, Caiyan RAO, Cong XU, Siyi LI, Yi DUAN, Jian ZHANG. Control effect of laser energy deposition on supersonic inlet flow [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729424-729424. |
[10] | Hongkang LIU, Jianqiang CHEN, Xinghao XIANG, Yatian ZHAO. Transition prediction for HIAD with different Reynolds numbers by improved k-ω-γtransition model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126868-126868. |
[11] | Jian ZHANG, Min ZHANG, Juan DU, Weiliang HUANG, Chaoqun NIE. Experimental investigation into adaptive Coanda jet control in highly loaded compressor [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128883-128883. |
[12] | Mengge WANG, Xiaoming HE, Juanjuan WANG, Yue ZHANG, Kun WANG, Huijun TAN, Liugang LI. Shock wave/boundary layer interaction control method based on oscillating vortex generator [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 128503-128503. |
[13] | Wei KANG, Shilin HU, Yanqing WANG. Lift enhancement mechanism of dielectric elastic membrane airfoil [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128318-128318. |
[14] | Liu ZHANG, Yong HUANG, Fuzheng CHEN, Zhenglong ZHU, Tianhao GUO, Yubiao JIANG, Zhu ZHOU. Rudderless attitude control flight test based on circulation control of tailless flying wing in pitch and roll axes [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128224-128224. |
[15] | Shanshan TIAN, Liang JIN, Zhaobo DU, Xiangyu ZHONG, Wei HUANG, Yuanyang LIU. Research progress of shock wave/boundary layer interaction controls induced by bump [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 28411-028411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341