[1] SMITH A, GAMBERONI N. Transition, pressure gradient and stability theory:ES-26388[R]. Long Beach:Douglas Aircraft Company, 1956. [2] VAN INGEN J. A suggested semi-empirical method for the calculation of the boundary layer transition region[R]. Delft:Delft University of Technology, 1956. [3] MALIK M R. COSAL:A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers:NASA-CR-155952[R]. Washington, D.C.:NASA, 1982. [4] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional flows[J]. Progress in Aerospace Sciences, 2000, 36(2):173-191. [5] CEBECI T. Stability and transition:Theory and application[M]. Berlin, Heidelberg:Springer, 2004. [6] 苏彩虹. 高超音速圆锥边界层的转捩预测及e-N方法的改进[D]. 天津:天津大学, 2008. SU C H. The transition prediction of boundary layers on a hypersonic cone and the improvement of the e-N method[D]. Tianjin:Tianjin University, 2008(in Chinese). [7] ZHAO L, YU G T, LUO J S. Extension of eN method to general three-dimensional boundary layers[J]. Applied Mathematics and Mechanics, 2017, 38(7):1007-1018. [8] SARIC W S, REED H L, WHITE E B. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35(1):413-440. [9] OBREMSKI H, MORKOVIN M, LANDAHL M, et al. A portfolio of stability characteristics of incompressible boundary layers:AGARD-No.134[R]. Brussels:NATO, 1969. [10] KLEBANOFF P S, TIDSTROM K D, SARGENT L M. The three-dimensional nature of boundary-layer instability[J]. Journal of Fluid Mechanics, 1962, 12(1):1-34. [11] DEYHLE H, HOHLER G, BIPPES H. Experimental investigation of instability wave propagation in a three-dimensional boundary-layer flow[J]. AIAA Journal, 1993, 31(4):637-645. [12] RADEZTSKY R H, REIBERT M S, SARIC W S. Development of stationary crossflow vortices on a swept wing:AIAA-1994-2373[R]. Reston:AIAA, 1994. [13] WASSERMANN P, KLOKER M. Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer[J]. Journal of Fluid Mechanics, 2002, 456:49-84. [14] 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展, 2012, 42(3):262-273. XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273(in Chinese). [15] RADEZTSKY JR R H, REIBERT M, SARIC W, et al. Effect of micron-sized roughness on transition in swept-wing flows:AIAA-1993-0076[R]. Reston:AIAA, 1993. [16] MALIK M. Boundary-layer transition prediction toolkit:AIAA-1997-1904[R]. Reston:AIAA, 1997. [17] CHANG C L. Langley stability and transition analysis code (LASTRAC) version 1.2 user manual:NASA TM-2004-2133233[R]. Washington, D.C.:NASA, 2004. [18] BOIKO A V, NECHEPURENKO Y M, ZHUCHKOV R N, et al. Laminar-turbulent transition prediction module for LOGOS package[J]. Thermophysics and Aeromechanics, 2014, 21(2):191-210. [19] PINNA F. VESTA toolkit:A software to compute transition and stability of boundary layers:AIAA-2013-2616[R]. Reston:AIAA, 2013. [20] 黄章峰, 逯学志, 于高通. 机翼边界层的横流稳定性分析和转捩预测[J]. 空气动力学学报, 2014, 32(1):14-20. HUANG Z F, LU X Z, YU G T. Cross-flow instability analysis and transition prediction of airfoil boundary layer[J]. Acta Aerodynamica Sinica, 2014, 32(1):14-20(in Chinese). [21] 宋文萍, 吴猛猛, 朱震, 等. 面向层流减阻设计的转捩预测方法研究[J]. 空气动力学学报, 2018, 36(2):213-228. SONG W P, WU M M, ZHU Z, et al. Transition prediction methods towards significant drag reduction via laminar flow technology[J]. Acta Aerodynamica Sinica, 2018, 36(2):213-228(in Chinese). [22] SHI Y Y, GROSS R, MADER C A, et al. Transition prediction in a RANS solver based on linear stability theory for complex three-dimensional configurations:AIAA-2018-0819[R]. Reston:AIAA, 2018. [23] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684. [24] BÉGOU G, DENIAU H, VERMEERSCH O, et al. Database approach for laminar-turbulent transition prediction:Navier-Stokes compatible reformulation[J]. AIAA Journal, 2017, 55(11):3648-3660. [25] KRUMBEIN A. eN transition prediction for 3D wing configurations using database methods and a local, linear stability code[J]. Aerospace Science and Technology, 2008, 12(8):592-598. [26] ELIASSON P, HANIFI A, PENG S H. Influence of transition on high-lift prediction with the NASA trap wing model:AIAA-2011-3009[R]. Reston:AIAA, 2011. [27] DRELA M, GILES M B. Viscous-inviscid analysis of transonic and low Reynolds number airfoils[J]. AIAA Journal, 1987, 25(10):1347-1355. [28] CODER J, MAUGHMER M D. A CFD-compatible transition model using an amplification factor transport equation:AIAA-2013-0253[R]. Reston:AIAA, 2013. [29] CODER J G, MAUGHMER M D. Computational fluid dynamics compatible transition modeling using an amplification factor transport equation[J]. AIAA Journal, 2014, 52(11):2506-2512. [30] CODER J G, MAUGHMER M D. Application of the amplification factor transport transition model to the shear stress transport model:AIAA-2015-0588[R]. Reston:AIAA, 2015. [31] CODER J G. Enhancement of the amplification factor transport transition modeling framework:AIAA-2017-1709[R]. Reston:AIAA, 2017. [32] CODER J G. Further development of the amplification factor transport transition model for aerodynamic flows:AIAA-2019-0039[R]. Reston:AIAA, 2019. [33] XU J K, BAI J Q, ZHANG Y, et al. Transition study of 3D aerodynamic configures using improved transport equations modeling[J]. Chinese Journal of Aeronautics, 2016, 29(4):874-881. [34] XU J K, HAN X, QIAO L, et al. Fully local amplification factor transport equation for stationary crossflow instabilities[J]. AIAA Journal, 2019, 57(7):2682-2693. [35] XU J K, QIAO L, BAI J Q. Improved local amplification factor transport equation for stationary crossflow instability in subsonic and transonic flows[J]. Chinese Journal of Aeronautics, 2020, 33(12):3073-3081. [36] 王玉轩, 徐家宽, 张扬, 等. 横流驻波增长因子模式在跨声速边界层的应用[J/OL]. 空气动力学学报, (2021-12-21)[2021-12-31]. https://kns.cnki.net/kcms/detail/51.1192.TK.20211220.1139.010.html. WANG Y X, XU J K, ZHANG Y, et al. Applications of transition model based on amplification factor of stationary crossflow waves in transonic boundary layers[J/OL]. Acta Aerodynamica Sinica, (2021-12-21)[2021-12-31]. https://kns.cnki.net/kcms/detail/51.1192.TK.20211220.1139.010.html (in Chinese). [37] XU J K, QIAO L, BAI J Q. A CFD-compatible amplification factor transport equation for oblique Tollmien-Schlichting waves in supersonic boundary layers[J]. International Journal of Aerospace Engineering, 2020, 2020:3945463. [38] XU J K. Linear amplification factor transport equation for stationary crossflow instabilities in supersonic boundary layers[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2021, 235(6):703-717. [39] XU J K, BAI J Q, QIAO L, et al. Fully local formulation of a transition closure model for transitional flow simulations[J]. AIAA Journal, 2016, 54(10):3015-3023. [40] MACK L. Transition prediction and linear stability theory[R]. Paris:AGARD, 1977. [41] 史亚云, 白俊强, 华俊, 等. 基于放大因子与Spalart-Allmaras湍流模型的转捩预测[J]. 航空动力学报, 2015, 30(7):1670-1677. SHI Y Y, BAI J Q, HUA J, et al. Transition prediction based on amplification factor and Spalart-Allmaras turbulence model[J]. Journal of Aerospace Power, 2015, 30(7):1670-1677(in Chinese). [42] 徐家宽, 白俊强. 基于边界层相似性解的放大因子输运模型[J]. 航空学报, 2016, 37(4):1103-1113. XU J K, BAI J Q. Amplification factor transport model based on boundary layer similarity solution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1103-1113(in Chinese). [43] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. [44] MENTER F R, SMIRNOV P E, LIU T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4):583-619. [45] LANGTRY R. Extending the γ-Reθt correlation based transition model for crossflow effects:AIAA-2015-2474[R]. Reston:AIAA, 2015. [46] VENKATACHARI B S, PAREDES P, DERLAGA J M, et al. Assessment of transition modeling capability in OVERFLOW with emphasis on swept-wing configurations:AIAA-2020-1034[R]. Reston:AIAA, 2020. [47] PAREDES P, VENKATACHARI B, CHOUDHARI M M, et al. Toward a practical method for hypersonic transition prediction based on stability correlations[J]. AIAA Journal, 2020, 58(10):4475-4484. [48] VENKATACHARI B S, PAREDES P, DERLAGA J M, et al. Assessment of RANS-based transition models based on experimental data of the common research model with natural laminar flow:AIAA-2021-1430[R]. Reston:AIAA, 2021. [49] MVLLER C, HERBST F. Modelling of crossflow induced transition based on local variables[C]//6th European Conference on Computational Fluid Dynamics (ECFD VI), 2014:6358-6369. [50] GRABE C, NIE S Y, KRUMBEIN A. Transition transport modeling for the prediction of crossflow transition:AIAA-2016-3572[R]. Reston:AIAA, 2016. [51] XU J K, BAI J Q, FU Z Y, et al. Parallel compatible transition closure model for high-speed transitional flow[J]. AIAA Journal, 2017, 55(9):3040-3050. [52] QIAO L, XU J K, BAI J Q, et al. Fully local transition closure model for hypersonic boundary layers considering crossflow effects[J]. AIAA Journal, 2021, 59(5):1692-1706. [53] CROUCH J D, NG L L. Variable N-factor method for transition prediction in three-dimensional boundary layers[J]. AIAA Journal, 2000, 38(2):211-216. |