[1] URNES J, NGUYEN N, IPPOLITO C, et al. A mission adaptive variable camber flap control system to optimize high lift and cruise lift-to-drag ratios of future n+3 transport aircraft[C]//51th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2013:1-7.
[2] JAMES M, URNES J, CHARLES M. Control system design for a variable camber continuous trailing edge flap system on an elastic wing[C]//55th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2014:1-13.
[3] RENEAUX J. Overview on drag reduction technologies for civil transport aircraft[C]//European Congress on Computational Methods in Applied Sciences and Engineering. Jyväskylä:ECCOMAS, 2004:7-24.
[4] KOTA S. Shape control of adaptive structures using compliant mechanisms:AFRLSR-BL-TR-00-0125[R]. Ann Arbor:Department of Mechanical Engineering and Applied Mechanics, 2000.
[5] KERR-JIA L, KOTA S. Design of compliant mechanisms for morphing stricture shapes[J]. Journal of Intelligent Material Systems and Structures, 2003, 14(6):379-391.
[6] DI-MATTEO N, GUO S, AHMED S, et al. Design and analysis of a morphing flap structure for high lift wing[C]//51th AIAA/ASME/ASCE/AHS/-ASC Structures, Structural Dynamics, and Material Conference. Reston:AIAA, 2010:4-12.
[7] YOKOZEKI T, SUGIURA A. Development of variable camber morphing airfoil using corrugated structure[J]. Journal of Aircraft, 2014, 51(3):1023-1029.
[8] YOKOZEKI T, SUGIURA A. Development and wind tunnel test of variable camber morphing wing[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2014:1-13.
[9] KAUL K, NGUYEN N. Drag optimization study of variable camber continuous trailing tdge flap using overflow[C]//32nd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2014:6-16.
[10] 杨智春, 解江. 柔性后缘自适应机翼的概念设计[J]. 航空学报, 2009, 30(6):1028-1034. YANG Z C, XIE J. Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1028-1034(in Chinese).
[11] 杨智春, 党会学, 解江. 基于动网格技术的柔性后缘自适应机翼气动特性分析[J]. 应用力学学报, 2009, 26(3):548-554. YANG Z C, DANG H X, XIE J. Aerodynamic characteristics of flexible trailing edge adaptive wing by unstructured dynamic meshes[J]. Chinese Journal of Applied Mechanics, 2009, 26(3):548-554(in Chinese).
[12] 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学报. 2010, 28(1):46-53. CHEN Q, BAI P, YIN W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1):46-53(in Chinese).
[13] 孔博, 王福新, 周涛. 基于环量控制无缝变弯度翼型的气动设计[J]. 空气动力学报, 2013, 31(5):583-586. KONG B, WANG F X, ZHOU T. The aerodynamic design of seamlessly camber-variable airfoil based on circulation control[J]. Acta Aerodynamica Sinica, 2013, 31(5):583-586(in Chinese).
[14] 黄杰, 葛文杰, 杨方. 实现机翼前缘形状连续变化柔性机构的拓扑优化[J]. 航空学报, 2007, 28(4):988-992. HUANG J, GE W J, YANG F. Topology optimization of the compliant mechanism for shape change of airfoil leading edge[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):988-992(in Chinese).
[15] 赵飞, 葛文杰, 张龙. 某无人机柔性机翼后缘变形机构的拓扑优化[J]. 机械设计, 2009, 26(8):19-22. ZHAO F, GE W J, ZHANG L. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft[J]. Journal of Machine Design, 2009, 26(8):19-22(in Chinese).
[16] 王婷, 王帮峰, 芦吉云, 等. 一种拓扑优化方法在机翼可变后缘中的研究[J]. 机械科学与技术, 2011, 30(1):1660-1663. WANG T, WANG B F, LU J Y, et al. The study of a topological optimization method on the adaptive wing's trailing edge[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(1):1660-1663(in Chinese).
[17] 尹维龙, 石庆华, 田冬奎. 变体后缘的索网传动机构设计与分析[J]. 航空学报, 2013, 34(8):1824-1831. YIN W L, SHI Q H, TIAN D K. Design and analysis of transmission mechanism with cable networks for morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1824-1831(in Chinese).
[18] 刘卫东, 丁倩, 朱华, 等. 基于超声电机的变弯度翼的驱动与集成[J]. 振动、测试与诊断. 2013, 33(5):856-861. LIU W D, DING Q, ZHU H, et al. Drive and integration techniques of variable camber wing based on ultrasonic motors[J]. Journal of Vibration, Measurement and Diagnosis, 2013, 33(5):856-861(in Chinese).
[19] SANTINI G M. Wing variable camber trailing edge tip:USA. US8844879[P]. 2014-09-30.
[20] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese).
[21] COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE 2822-pressure distributions, and boundary layer and wake measurements:AGARD AR-138[R]. Neuilly Sur Seine, France:AGARD, 1979.
[22] PAINCHAUD-OUELLET S, TRIBES C, TREPANIER J Y, et al. Airfoil shape optimization using a nonuniform rational B-splines parameterization under thickness constraint[J]. AIAA Journal, 2006, 44(10):2170-2178.
[23] 张宇飞. 基于先进CFD方法的民用客机气动优化设计[D]. 北京:清华大学, 2010. ZHANG Y F. Aerodynamic optimization of civil aircraft design based on advanced computational fluid dynamics[D]. Beijing:Tsinghua University, 2010(in Chinese).
[24] 杨昆淼, 张卫民, 王斌. 基于机翼气动设计准则的超临界机翼气动优化研究[J]. 航空学报, 2013, 34(2):263-272. YANG K M, ZHANG W M, WANG B. Research of super-critical wing optimization based on aerodynamic design principle of wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):263-272(in Chinese). |