[1] Aeronautical Systems Division, Wright-Patterson Air Force Base. Military Standard 1783 United States Air Force Engine Structural Integrity Program[S]. OH: Aeronautical Systems Division, Wright-Patterson Air Force Base, 1984.[2] Ghonem H, Nicholas T, Pineau A. Elevated temperature fatigue crack growth in alloy 718—Part Ι: effects of mechanical variables[J]. Fatigue and Fracture of Engineering Material and Structures, 1993, 16(5): 565-576.[3] The Compile Commitee of Materials Mechanical Data Handbook for Aircraf Engine Design. Materials mechanical data handbook for aircraft engine design (4) [M]. Beijing: Aviation Industry Press, 2010:151-153 (in Chinese). 《航空发动机设计用材料数手册》编委会. 航空发动机设计用材料数据手册(第四册)[M]. 北京: 航空工业出版社, 2010: 151-153.[4] Miller K J. The short crack problem[J]. Fatigue and Fracture of Engineering Materials and Structures, 1982, 5(3): 223-232.[5] Wu X R, Newman J C, Zhao W, et al. Small crack growth and fatigue life predictions for high-strength aluminum alloys: Part Ι—experimental and fracture mechanics analysis[J]. Fatigue and Fracture of Engineering Material and Structures, 1998, 21(11): 1289-1306.[6] Wu X R, Liu J Z. Total fatigue prediction for aeronautical materials by using small-crack theory[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(2): 219-226 (in Chinese). 吴学仁, 刘建中. 基于小裂纹理论的航空材料疲劳全寿命预测[J]. 航空学报, 2006, 27(2): 219-226.[7] Luo J, Bowen P. Small and long fatigue crack growth behavior of a PM Ni-based superalloy, Udimet 720[J]. International Journal of Fatigue, 2004, 26(2): 113-124.[8] Polak J. Cyclic deformation, crack initiation, and low-cycle fatigue[M]//Ritchie R O, Murakami Y. Comprehensive Structural Integrity: Cyclic Loading and Fracture. Amsterdam: Elsevier, 2003: 1-39.[9] Connolley T, Reed P A S, Starink M J. Short crack initiation and growth at 600 ℃ in notched specimens of inconel 718[J]. Materials Science and Engineering: A, 2003, 340(1-2): 139-154.[10] Romanoski G R, Jr. The fatigue behavior of small cracks aircraft turbine disk alloys[D]. Massachusetts, MA: Massachusetts Institute of Technology, 1990.[11] Bache M R, Evans W J, Hardy M C. The effects of environment and loading waveform on fatigue crack growth in inconel 718[J]. International of Fatigue, 1999, 21(Supplement): S69-S77.[12] Connolley T, Starink M J, Reed P A S. Effect of oxidation on high temperature fatigue crack initiation and short crack growth in inconel 718[C]//Pollock T M, Kissinger RD, Bowman R R, et al., editors. Proceedings of the 9th International Symposium on Superalloys (Superalloys 2000). Warrendale, PA: The Minerals, Metals & Materials Society (TMS). 2000: 435-444.[13] Xie X S, Zhang L N, Zhang M C, et al. Micro-mechanical behavior study of non-metallic inclusions in nickel-base P/M superalloy[J]. Acta Metallurgica Sinica, 2002, 38(6): 635-642 (in Chinese). 谢锡善, 张丽娜, 张麦仓, 等. 镍基粉末高温合金中夹杂物的微观力学行为研究[J]. 金属学报, 2002, 38(6): 635-642.[14] Ma X F, Shi H J. On the fatigue small crack behaviors of directionally solidified superalloy DZ4 by in situ SEM observations[J]. International Journal of Fatigue, 2012, 35(1): 91-98.[15] Huang X Y, Yu H C, Xu M Q, et al.Experimental investigation on microcrack initiation process in nickel-based superalloy DAGH4169[J]. International Journal of Fatigue, 2012, 42: 153-164.[16] Caton M J, Jha S K. Small fatigue crack growth and failure mode transitions in Ni-base superalloy at elevated temperature[J]. International Journal of Fatigue, 2010, 32(9): 1461-1472.[17] Mercer C, Soboyejo A B O, Soboyejo W O. Micromechanisms of fatigue crack growth in a forged inconel 718 nickel-based superalloy[J]. Materials Science and Engineering: A, 1999, 270(2): 308-322. |