[1] ZHANG X S, CHEN Y J, HU J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97:22-34. [2] ZHANG Y, XU Z Y, WANG Y, et al. Surface-improvement mechanism of hybrid electrochemical discharge process using variable-amplitude pulses[J]. Chinese Journal of Aeronautics, 2020, 33(10):2782-2793. [3] PENG Z L, ZHANG D Y, ZHANG X Y. Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder[J]. Chinese Journal of Aeronautics, 2020, 33(12):3535-3549. [4] PERRUT M, CARON P, THOMAS M, et al. High temperature materials for aerospace applications:Ni-based superalloys and γ-TiAl alloys[J]. Comptes Rendus Physique, 2018, 19(8):657-671. [5] MENG B, WAN M, ZHAO R, et al. Micromanufacturing technologies of compact heat exchangers for hypersonic precooled airbreathing propulsion:A review[J]. Chinese Journal of Aeronautics, 2020, 34(2):79-103. [6] 孔豪豪, 杨树峰, 曲敬龙, 等. GH4169铸锭中夹杂物的类型及分布规律[J]. 航空学报, 2020, 41(4):423306. KONG H H, YANG S F, QU J L, et al. Type and distribution of inclusion in GH4169 nickel based superalloy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):423306(in Chinese). [7] EZUGWU E O, WANG Z M, MACHADO A R. The machinability of nickel-based alloys:a review[J]. Journal of Materials Processing Technology, 1999, 86(1-3):1-16. [8] 李茜, 张福禄, 赵子华. 镍基单晶/柱晶高温合金超高周疲劳研究进展[J]. 航空学报, 2021, 42(5):524340. LI Q, ZHANG F L, ZHAO Z H. Review of very high cycle fatigue of nickel-based single-crystal and directionally solidified superalloys[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524340(in Chinese). [9] 徐金亭, 牛金波, 陈满森, 等. 精密复杂曲面零件多轴数控加工技术研究进展[J]. 航空学报, 2021, 42(5):524340. XU J T, NIU J B, CHEN M S, et al. Research Progress in multi axis CNC machining of precision complex curved parts[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524340(in Chinese). [10] SINGH G, GUPTA M K, MIA M, et al. Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4):481-494. [11] 刘均伟. 镍基高温合金Inconel718高速切削实验研究[D]. 济南:山东大学, 2018. LIU J W. Experimental study on high speed cutting of nickel-based superalloy inconel718[D]. Ji'nan:Shandong University, 2018(in Chinese). [12] 罗凯. 基于切削仿真的高效铣削镍基高温合金工艺参数优化研究[D]. 长春:长春理工大学, 2019. LUO K. Study on process parameters optimization for high efficiency milling of nickel based superalloy based on cutting simulation[D]. Changchun:Changchun University of Science and Technology, 2019(in Chinese). [13] ÇELIK A, SERT ALA AGˇG3 AÇ M, TURAN S, et al. Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718[J]. Wear, 2017, 378-379:58-67. [14] MING W W, HUANG X H, JI M, et al. Analysis of cutting responses of Sialon ceramic tools in high-speed milling of FGH96 superalloys[J]. Ceramics International, 2021, 47(1):149-156. [15] KURSUNCU B, CALISKAN H, GUVEN S Y, et al. Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 superalloy using multilayer nanocomposite hard coating and cryogenic heat treatment[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4):467-479. [16] 刘志东. 放电诱导可控烧蚀高效加工典型工艺方法[J]. 电加工与模具, 2012(1):1-6. LIU Z D. Series typical efficient machining methods of controllable burning by discharge-induced[J]. Electromachining & Mould, 2012(1):1-6(in Chinese). [17] 王祥志, 刘志东, 邱明波, 等. 气体压力对钛合金电火花诱导烧蚀加工的影响[J]. 航空学报, 2014, 35(12):3480-3488. WANG X Z, LIU Z D, QIU M B, et al. Influence of gas pressure on EDM ablation of titanium alloy[J]. Acta Aeronautica et Astronautica Sinica 2014, 35(12):3480-3488(in Chinese). [18] 徐安阳, 刘志东, 李文沛, 等. 功能电极烧蚀加工典型难加工材料实验研究[J]. 南京航空航天大学学报, 2014, 46(5):763-768. XU A Y, LIU Z D, LI W P, et al. Experimental study on function electrode ablation machining of difficult-to-machine materials[J]. Journal of Nanjing University of Aeronautics & Astronautics 2014, 46(5):763-768(in Chinese). [19] ZHU G, ZHANG M, ZHANG Q H, et al. High-speed vibration-assisted electro-arc machining[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9-12):3121-3129. [20] ZHAO W S, GU L, XU H, et al. A novel high efficiency electrical erosion process-blasting erosion arc machining[J]. Procedia CIRP, 2013, 6:621-625. [21] FARHADI A, ZHU Y M, GU L, et al. Electric arc sweep milling of open channels[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1-4):673-683. [22] JIA Y C, CHI G X, SHEN Y, et al. Electrode design using revolving entity extraction for high-efficiency electric discharge machining of integral shrouded blisk[J]. Chinese Journal of Aeronautics, 2020, 34(6):178-187. [23] KOU Z J, HAN F Z. On sustainable manufacturing titanium alloy by high-speed EDM milling with moving electric arcs while using water-based dielectric[J]. Journal of Cleaner Production, 2018, 189:78-87. [24] KOU Z J, HAN F Z, WANG G S. Research on machining Ti6Al4V by high-speed electric arc milling with breaking arcs via mechanical-hydrodynamic coupling forces[J]. Journal of Materials Processing Technology, 2019, 271:499-509. [25] JOSHI S, GOVINDAN P, MALSHE A, et al. Experimental characterization of dry EDM performed in a pulsating magnetic field[J]. CIRP Annals, 2011, 60(1):239-242. [26] WANG F, LIU Y H, ZHANG Y Z, et al. Compound machining of titanium alloy by super high speed EDM milling and arc machining[J]. Journal of Materials Processing Technology, 2014, 214(3):531-538. [27] SHEN Y, LIU Y H, SUN W Y, et al. High-speed near dry electrical discharge machining[J]. Journal of Materials Processing Technology, 2016, 233:9-18. |