[1] 张丽霞, 雷敏, 杨智烨, 等. AgCuNiLi钎焊TiC金属陶瓷与GH3128界面结构及接头性能[J]. 稀有金属材料与工程, 2017, 46(11):3410-3415. ZHANG L X, LEI M, YANG Z Y, et al. Interfacial microstructure and properties of TiC cermet and GH3128 joint brazed using AgCuNiLi[J]. Rare Metal Materials and Engineering, 2017, 46(11):3410-3415(in Chinese). [2] 钱振. GH3039高温合金脉冲电子束表面铬合金化和渗铝涂层的制备及其耐高温氧化性能研究[D]. 镇江:江苏大学, 2020. QIAN Z. Preparation and high temperature oxidation resistance of pulse electron beam Cr alloyed/aluminized coating on GH3039 superalloy[D]. Zhenjiang:Jiangsu University, 2020(in Chinese). [3] 段辉平, 李树杰, 刘登科, 等. SiC陶瓷与GH128镍基高温合金反应连接研究[J]. 航空学报, 2000, 21(S1):122-125. DUAN H P, LI S J, LIU D K, et al. Investigation on the reaction joining of SiC ceramic to Ni based superalloy[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(S1):122-125(in Chinese). [4] LIU D, SONG Y Y, SHI B, et al. Vacuum brazing of GH99 superalloy using graphene reinforced BNi-2 composite filler[J]. Journal of Materials Science & Technology, 2018, 34(10):1843-1850. [5] WANG W L, HUANG J H, WANG Y L, et al. A novel process with the characteristics of low-temperature bonding and high-temperature resisting for joining Cf/SiC composite to GH3044 alloy[J]. Journal of the European Ceramic Society, 2019, 39(16):5468-5472. [6] 李天文, 郭万林, 淮军锋. 镍基钎料钎焊GH586高温合金[J]. 材料工程, 2010, (10):48-52. LI T W, GUO W L, HUAI J F. Brazing of superalloy GH586 with nickel-base filler metals[J]. Journal of Materials Engineering, 2010, (10):48-52(in Chinese). [7] 胡胜鹏, 李文强, 付伟, 等. BNi-2非晶钎料钎焊高铌TiAl合金与GH3536合金接头组织与性能[J]. 航空学报, 2021, 42(3):423846. HU S P, LI W Q, FU W, et al. Interfacial microstructure and mechanical properties of high Nb containing TiAl alloy and GH3536 superalloy brazed using amorphous BNi-2 filler[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):423846(in Chinese). [8] HAN W P, WAN M, ZHAO R, et al. Microstructural evolution and mechanical properties of brazed IN718 ultrathin-walled capillary structure using different particulate reinforced filler alloy[J]. Chinese Journal of Aeronautics, 2022, 35(3):550-564. [9] MIAO Q, DING W F, KUANG W J, et al. Grinding force and surface quality in creep feed profile grinding of turbine blade root of nickel-based superalloy with microcrystalline alumina abrasive wheels[J]. Chinese Journal of Aeronautics, 2021, 34(2):576-585. [10] 牛国宾, 王东坡, 杨振文, 等. Al2O3陶瓷与TiAl合金真空钎焊接头界面组织及性能[J]. 稀有金属材料与工程, 2017, 46(11):3282-3287. NIU G B, WANG D P, YANG Z W, et al. Interfacial structure and properties of Al2O3 ceramic and TiAl alloy brazed joints[J]. Rare Metal Materials and Engineering, 2017, 46(11):3282-3287(in Chinese). [11] ALI M, KNOWLES K M, MALLINSON P M, et al. Active metal brazing of Al2O3 to Kovar® (Fe-29 Ni-17Co wt.%) using Copper ABA® (Cu-3.0Si-2.3Ti-2.0Al wt.%)[J]. Philosophical Magazine, 2018, 98(3):182-202. [12] YANG Z W, LIN J M, WANG Y, et al. Characterization of microstructure and mechanical properties of Al2O3/TiAl joints vacuum-brazed with Ag-Cu-Ti + W composite filler[J]. Vacuum, 2017, 143:294-302. [13] SUN R J, ZHU Y, GUO W, et al. Microstructural evolution and thermal stress relaxation of Al2O3/1Cr18Ni9Ti brazed joints with nickel foam[J]. Vacuum, 2018, 148:18-26. [14] 王颖, 夏永红, 杨振文, 等. Ti3SiC2陶瓷与TC4合金钎焊接头微观组织及性能[J]. 稀有金属材料与工程, 2019, 48(9):3041-3047. WANG Y, XIA Y H, YANG Z W, et al. Interfacial microstructure and properties of brazed joints of Ti3SiC2 ceramic and TC4 alloy[J]. Rare Metal Materials and Engineering, 2019, 48(9):3041-3047(in Chinese). [15] BIAN H, SONG Y Y, LIU D, et al. Joining of SiO2 ceramic and TC4 alloy by nanoparticles modified brazing filler metal[J]. Chinese Journal of Aeronautics, 2020, 33(1):383-390. [16] LIN P P, LIN T S, HE P, et al. Microstructure evolution and mechanical properties of a vacuum-brazed Al2O3/Ti joint with Mo-coating on Al2O3 and Ti surfaces[J]. Ceramics International, 2019, 45(9):11195-11203. [17] XIN C L, LIU W B, LI N, et al. Metallization of Al2O3 ceramic by magnetron sputtering Ti/Mo bilayer thin films for robust brazing to Kovar alloy[J]. Ceramics International, 2016, 42(8):9599-9604. [18] ALI M, KNOWLES K M, MALLINSON P M, et al. Evolution of the interfacial phases in Al2O3-Kovar® joints brazed using a Ag-Cu-Ti-based alloy[J]. Philosophical Magazine, 2017, 97(10):718-742. [19] KOZLOVA O, VOYTOVYCH R, EUSTATHOPOULOS N. Initial stages of wetting of alumina by reactive CuAgTi alloys[J]. Scripta Materialia, 2011, 65(1):13-16. [20] 陈波, 熊华平, 毛唯, 等. 采用Ti-Zr-Cu-Ni真空钎焊Ti3Al/Ti3Al和Ti3Al/GH536接头组织及性能[J]. 航空材料学报, 2010, 30(5):35-38. CHEN B, XIONG H P, MAO W, et al. Microstructures and properties of Ti3Al/Ti3Al and Ti3Al/GH536 joints using Ti-Zr-Cu-Ni brazing filler[J]. Journal of Aeronautical Materials, 2010, 30(5):35-38(in Chinese). [21] LAIK A, MISHRA P, BHANUMURTHY K, et al. Microstructural evolution during reactive brazing of alumina to Inconel 600 using Ag-based alloy[J]. Acta Materialia, 2013, 61(1):126-138. [22] SHIUE R K, WU S K, O J M, et al. Microstructural evolution at the bonding interface during the early-stage infrared active brazing of alumina[J]. Metallurgical and Materials Transactions A, 2000, 31(10):2527-2536. [23] STEPHENS J J, HOSKING F M, HEADLEY T J, et al. Reaction layers and mechanisms for a Ti-activated braze on sapphire[J]. Metallurgical and Materials Transactions A, 2003, 34(12):2963-2972. [24] RIJNDERS M R, PETEVES S D. Joining of alumina using a V-Active filler metal[J]. Scripta Materialia, 1999, 41(10):1137-1146. [25] VOYTOVYCH R, ROBAUT F, EUSTATHOPOULOS N. The relation between wetting and interfacial chemistry in the CuAgTi/alumina system[J]. Acta Materialia, 2006, 54(8):2205-2214. [26] 叶晓凤, 王宇, 张恒泉, 等. Al2O3陶瓷/AgCuTi/GH99高温合金的钎焊接头力学性能[J]. 稀有金属材料与工程, 2018, 47(11):3564-3570. YE X F, WANG Y, ZHANG H Q, et al. Mechanical properties of alumina ceramic/AgCuTi/GH99 superalloy brazed joints[J]. Rare Metal Materials and Engineering, 2018, 47(11):3564-3570(in Chinese). |