| [1] |
邹鹏, 杨钧超, 陈向明, 等. 航空飞行器结构强度物理试验技术成熟度评价方法[J]. 航空学报, 2024, 45(24): 230414.
|
|
ZOU P, YANG J C, CHEN X M, et al. Readiness assessment system method of physical testing of aircraft structural strength[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 230414 (in Chinese).
|
| [2] |
贺东风, 赵越让, 钱仲焱, 等. 中国商用飞机有限责任公司系统工程手册[M]. 上海: 上海交通大学出版社, 2017: 1-16.
|
|
HE D F, ZHAO Y R, QIAN Z Y. COMAC systems engineering mannual[M]. Shanghai: Shanghai Jiao Tong University Press, 2017: 1-16 (in Chinese).
|
| [3] |
郭泰, 钱馨, 宫綦, 等. 基于模型的民机验证需求捕获及应用技术[J]. 北京航空航天大学学报, 2022, 48(10): 1933-1942.
|
|
GUO T, QIAN X, GONG Q, et al. Methodology for model based verification requirements capturing and application in civil aircraft development[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1933-1942 (in Chinese).
|
| [4] |
毕文豪, 范秋岑, 李德林, 等. 基于多视角的民机正向设计建模方法[J]. 航空学报, 2023, 44(10): 227536.
|
|
BI W H, FAN Q C, LI D L, et al. Modeling approach for forward design of civil aircraft based on multiple perspectives[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 227536 (in Chinese).
|
| [5] |
刘晚移, 冯蕴雯, 侯杰然, 等. Harmony SE在民用飞机设计中的应用[J]. 西北工业大学学报, 2024, 42(1): 35-44.
|
|
LIU W Y, FENG Y W, HOU J R, et al. Application of Harmony SE in civil aircraft design[J]. Journal of Northwestern Polytechnical University, 2024, 42(1): 35-44 (in Chinese).
|
| [6] |
胡晓义, 王如平, 王鑫, 等. 基于模型的复杂系统安全性和可靠性分析技术发展综述[J]. 航空学报, 2020, 41(6): 523436.
|
|
HU X Y, WANG R P, WANG X, et al. Recent development of safety and reliability analysis technology for model-based complex system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523436 (in Chinese).
|
| [7] |
国际系统工程协会. 系统工程手册: 系统生命周期流程和活动指南[M]. 张新国, 译. 北京: 机械工业出版社, 2013.
|
|
International Council on Systems Engineering. Systems engineering handbook: A guideline for system life cycle processes and activities[M]. ZHANG X G, translated. Beijing: China Machine Press, 2013 (in Chinese).
|
| [8] |
孙霄剑, 罗明强, 张驰, 等. 民用飞机预研论证权威真相源构建技术[J]. 航空学报, 2021, 42(2): 224222.
|
|
SUN X J, LUO M Q, ZHANG C, et al. Construction technology of authoritative source of truth for civil aircraft pre-research[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224222 (in Chinese).
|
| [9] |
李德林, 毕文豪, 张安, 等. 基于MBSE的民机研制过程管理[J]. 系统工程与电子技术, 2021, 43(8): 2209-2220.
|
|
LI D L, BI W H, ZHANG A, et al. MBSE-based process management in the development of civil aircraft[J]. Systems Engineering and Electronics, 2021, 43(8): 2209-2220 (in Chinese).
|
| [10] |
杨莹, 丁健, 李伟. 系统工程在飞机设计上的应用与实践[J]. 装备制造技术, 2019(11): 140-144, 155.
|
|
YANG Y, DING J, LI W. Application and practice of system engineering on the aircraft design[J]. Equipment Manufacturing Technology, 2019(11): 140-144, 155 (in Chinese).
|
| [11] |
王文浩, 毕文豪, 张安, 等. 基于MBSE的民机系统功能建模方法[J]. 系统工程与电子技术, 2021, 43(10): 2884-2892.
|
|
WANG W H, BI W H, ZHANG A, et al. Function modeling method of civil aircraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43(10): 2884-2892 (in Chinese).
|
| [12] |
毛志威, 屈展文, 张彤, 等. 基于MBSE的民机审定试飞场景设计[J]. 系统工程与电子技术, 2020, 42(8): 1768-1775.
|
|
MAO Z W, QU Z W, ZHANG T, et al. Design of civil aircraft certification test flight scenario based on MBSE[J]. Systems Engineering and Electronics, 2020, 42(8): 1768-1775 (in Chinese).
|
| [13] |
DATTA S, ROY R, BENDARKAR M V, et al. MBSE-enabled risk reduction for certification of novel aircraft configurations[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
|
| [14] |
FAZAL B, GLINSKI S, HARRISON E, et al. An MBSE framework for regulatory modeling of transport category airplanes[C]∥AIAA Aviation 2022 Forum. Reston: AIAA, 2022.
|
| [15] |
左雪雯, 吕岸, 谢文雅, 等. 基于MBSE的飞机级需求捕获与分析方法[C]∥2020(第九届)民用飞机航电国际论坛论文集, 2020: 117-124.
|
|
ZUO X W, LV A, XIE W Y, et al. Method of aircraft-level requirements capture and analysis based on MBSE[C]∥Proceedings of the 2020 (9th) Civil Aircraft Avionics International Forum, 2020: 117-124 (in Chinese).
|
| [16] |
王彬文, 王育鹏. 飞机强度试验[M]. 北京: 航空工业出版社, 2017.
|
|
WANG B W, WANG Y P. Aircraft strength test[M]. Beijing: Aviation Industry Press, 2017 (in Chinese).
|
| [17] |
林建鸿. 积木式方法与试验金字塔的历史沿革与发展趋势[J]. 航空工程进展, 2023, 14(5): 8-18.
|
|
LIN J H. The historical developments and trendencies of building block approach and testing pyramid[J]. Advances in Aeronautical Science and Engineering, 2023, 14(5): 8-18 (in Chinese).
|
| [18] |
孙侠生. 民用飞机结构强度刚度设计与验证指南-第三册[M]. 北京: 航空工业出版社, 2012.
|
|
SUN X S. Guide for design and verification of structural strength and stiffness of civil aircraft-Volume Ⅲ[M]. Beijing: Aviation Industry Press, 2012 (in Chinese).
|
| [19] |
任金虎, 许鸿杰, 王英儒, 等. 民用飞机研发过程中需求闭环验证技术研究与应用[J]. 智能制造, 2020(11): 60-63.
|
|
REN J H, XU H J, WANG Y R, et al. Research and application of requirement closed loop verification technology in the development process of civil aircraft[J]. Intelligent Manufacturing, 2020(11): 60-63 (in Chinese).
|
| [20] |
范周伟, 余雄庆, 戴亚林. 基于综合评价优化的民机顶层需求指标权衡[J]. 北京航空航天大学学报, 2023, 49(9): 2415-2422.
|
|
FAN Z W, YU X Q, DAI Y L. Trade-off for top-level requirements of commercial aircraft using comprehensive evaluation and optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2415-2422 (in Chinese).
|
| [21] |
范周伟. 基于模型的客机需求定义与概念设计一体化研究[D]. 南京: 南京航空航天大学, 2022.
|
|
FAN Z W. Model-based integration of requirements definition and conceptual design for commercial aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022 (in Chinese).
|
| [22] |
KIM D, VERBERNE J, SOTIROPOULOS-GEORGIOPOULOS E, et al. A model-based system engineering approach to the certification of transport type aircraft[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
|
| [23] |
王想生. 基于MBSE的大型灭火飞机寿命指标需求捕获与分析技术[J]. 中国科技信息, 2023, 34(6): 235-236.
|
|
WANG X S. Capture and analysis technology for life index requirements of large firefighting aircraft based on MBSE[J]. China Science and Technology Information, 2023, 34(6): 235-236 (in Chinese).
|
| [24] |
赵佶男, 梁勇. 面向适航要求的强度评定需求捕获研究[J]. 科学技术创新, 2023(20): 1-4.
|
|
ZHAO J N, LIANG Y. Strength assessment requirements capturing study for airworthiness of aircraft[J]. Scientific and Technological Innovation, 2023(20): 1-4 (in Chinese).
|