陈海昕(), 冯良韬, 段玉宇, 郭钰坤, 付越, 潘晨亮, 周奕杉
收稿日期:
2025-02-27
修回日期:
2025-03-02
接受日期:
2025-03-05
出版日期:
2025-03-15
发布日期:
2025-03-15
通讯作者:
陈海昕
E-mail:chenhaixin@tsinghua.edu.cn
基金资助:
Haixin CHEN(), Liangtao FENG, Yuyu DUAN, Yukun GUO, Yue FU, Chenliang PAN, Yishan ZHOU
Received:
2025-02-27
Revised:
2025-03-02
Accepted:
2025-03-05
Online:
2025-03-15
Published:
2025-03-15
Contact:
Haixin CHEN
E-mail:chenhaixin@tsinghua.edu.cn
Supported by:
摘要:
采用大展弦比机翼是提高飞行器升阻比的关键。然而,大展弦比机翼使飞行器的起降受到多方面的影响、限制,如跑道宽度、结构安全、气流影响等。介绍了一种原创的飞机变体形式,其以单翼巡航,双翼起降,在飞行中对2种模式进行双向切换;其变体不依赖于主动驱动机构,而是依靠对空气动力的调控来驱动和控制。这种变体形式可以大幅度改变翼展,兼顾了起降与巡航对飞行器翼展的不同需求,也使为实现变体付出的结构重量、空间、复杂度等代价降到了最低;但作为一种全新的变体方式,其也带来了气动设计、动力学与控制、结构可靠性、试验验证等多方面挑战。
中图分类号:
陈海昕, 冯良韬, 段玉宇, 郭钰坤, 付越, 潘晨亮, 周奕杉. 空气动力驱动变体飞展翼飞机[J]. 航空学报, 2025, 46(5): 531905.
Haixin CHEN, Liangtao FENG, Yuyu DUAN, Yukun GUO, Yue FU, Chenliang PAN, Yishan ZHOU. Aerodynamics-driven monoplane-biplane morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531905.
1 | 向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 57-77. |
XIANG J W, KAN Z, SHAO H Y, et al. A review of key technologies for long-endurance unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 57-77 (in Chinese). | |
2 | SMITH M H, RENZELMANN M E, MARX A D. Folding wing-tip system: US5381986A[P]. 1995-01-17. |
3 | PEDLOW G W, WELZENBACH D E. The CIA and the U-2 Program 1954-1974[M]. Collingdale: DIANE Publishing Co, 1998. |
4 | NOLL T E, ISHMAEL S D, HENWOOD B, et al. Technical findings, lessons learned, and recommendations resulting from the helios prototype vehicle mishap[R]. Hampton: NASA Langley Research Center, 2007. |
5 | WENG C T, HO C S, LAN C E, et al. Aerodynamic analysis of a jet transport in windshear encounter during landing[J]. Journal of Aircraft, 2006, 43(2): 419-427. |
6 | 陈树生, 贾苜梁, 刘衍旭, 等. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595. |
CHEN S S, JIA M L, LIU Y X, et al. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629595 (in Chinese). | |
7 | HALLION R P, PEEBLES C. Probing the Sky: Selected NACA research airplanes and their contributions to flight[M]. Washington, D. C.: National Aeronautics and Space Administration, 2014. |
8 | TRANKLE T L, BACHNER S D. Identification of a nonlinear aerodynamic model of the F-14 aircraft[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(6): 1292-1297. |
9 | BLONDEAU J, PINES D. Wind tunnel testing of a morphing aspect ratio wing using an pneumatic telescoping spar[C]∥2nd AIAA “Unmanned Unlimited” Conferences and Workshop & Exhibit. Reston: AIAA, 2003. |
10 | BLONDEAU J, RICHESON J, PINES D. Design of a morphing aspect ratio wing using an inflatable telescoping spar[C]∥44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003. |
11 | BAE J S, SEIGLER T M, INMAN D J. Aerodynamic and static aeroelastic characteristics of a variable-span morphing wing[J]. Journal of Aircraft, 2005, 42(2): 528-534. |
12 | SANTOS P, SOUSA J, GAMBOA P. Variable-span wing development for improved flight performance[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(8): 961-978. |
13 | SHAVROV V B. History of Aircraft Construction in the USSR (Vol 2)[M]. Moscow: Mashinostroenie, 1985. |
14 | KUDVA J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 261-267. |
15 | TAKAHASHI T, SPALL R, TURNER D, et al. A multi-disciplinary assessment of morphing aircraft technology applied to tactical cruise missile configuations[C]∥45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004. |
16 | LOVE M, ZINK P, STROUD R, et al. Demonstration of morphing technology through ground and wind tunnel tests[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
17 | FLANAGAN J, STRUTZENBERG R, MYERS R, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
18 | BAE J S, SEIGLER T M, INMAN D, et al. Aerodynamic and aeroelastic considerations of a variable-span morphing wing[C]∥45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004. |
19 | BYE D, MCCLURE P. Design of a morphing vehicle[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
20 | IVANCO T, SCOTT R, LOVE M, et al. Validation of the lockheed martin morphing concept with wind tunnel testing[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
21 | SUN J, GUAN Q H, LIU Y J, et al. Morphing aircraft based on smart materials and structures: A state-of-the-art review[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(17): 2289-2312. |
22 | PECORA R, AMOROSO F, LECCE L. Effectiveness of wing twist morphing in roll control[J]. Journal of Aircraft, 2012, 49(6): 1666-1674. |
23 | BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. |
24 | PERRY B, COLE S R, MILLER G D. Summary of an active flexible wing program[J]. Journal of Aircraft, 1995, 32(1): 10-15. |
25 | CLARKE R, ALLEN M, DIBLEY R, et al. Flight test of the F/A-18 active aeroelastic wing airplane[C]∥AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2005. |
26 | CUMMING S B, SMITH M S, ALI A, et al. Aerodynamic flight test results for the adaptive compliant trailing edge[C]∥AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016. |
27 | WLEZIEN R, HORNER G, MCGOWAN A, et al. The aircraft morphing program[C]∥39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston: AIAA, 1998. |
28 | SOFLA A Y N, MEGUID S A, TAN K T, et al. Shape morphing of aircraft wing: Status and challenges[J]. Materials & Design, 2010, 31(3): 1284-1292. |
29 | HARVEY C, GAMBLE L L, BOLANDER C R, et al. A review of avian-inspired morphing for UAV flight control[J]. Progress in Aerospace Sciences, 2022, 132: 100825. |
30 | MA N, ZHOU X D, HE G P, et al. Design and analysis of a bat-like active morphing wing mechanism[C]∥ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2016: DET C2016-59111. |
31 | WANG I, DOWELL E H. Structural dynamics model of multisegmented folding wings: Theory and experiment[J]. Journal of Aircraft, 2011, 48(6): 2149-2160. |
32 | DI LUCA M, MINTCHEV S, HEITZ G, et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones[J]. Interface Focus, 2017, 7(1): 20160092. |
33 | CARLSON S J, ARORA P, PAPACHRISTOS C. A multi-VTOL modular aspect ratio reconfigurable aerial robot[C]∥2022 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2022: 8-15. |
34 | MENG Y, AN C, XIE C C, et al. Conceptual design and flight test of two wingtip-docked multi-body aircraft[J]. Chinese Journal of Aeronautics, 2022, 35(12): 144-155. |
35 | WEISSHAAR T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of Aircraft, 2013, 50(2): 337-353. |
36 | ZHOU X P, CHEN H X. Conceptual design of self-expanding/ folding extremely large aspect ratio wing airplane[C]∥EUCASS 2017. Milan: EUCASS, 2017, doi: 10.13009/EUCASS2017-209 . |
37 | 陈海昕, 周肖鹏. 基于自展开折叠翼技术的超大展弦比飞机: CN206644995U[P]. 2017-11-17. |
CHEN H X, ZHOU X P. Ultra-high aspect ratio aircraft based on self-deployable folding wing technology: CN206644995U[P]. 2017-11-17. | |
38 | GUO T Y, FENG L T, ZHU C H, et al. Conceptual research on a mono-biplane aerodynamics-driven morphing aircraft[J]. Aerospace, 2022, 9(7): 380. |
39 | 郭廷宇. 单-双折叠翼变体飞行器总体设计研究[D]. 北京: 清华大学, 2023. |
GUO T Y. Research on the overall design of the monoplane-biplane morphing aircraft[D]. Beijing: Tsinghua University, 2023 (in Chinese). | |
40 | FENG L T, GUO T Y, ZHU C H, et al. Control design and flight test of aerodynamics-driven monoplane-biplane morphing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2023, 46(12): 2373-2387. |
41 | GUO T Y, ZHU C H, FENG L T, et al. Aerodynamic-driven morphing aircraft and its aerodynamic design[J]. Chinese Journal of Aeronautics, 2024, doi: 10.1016/j.cja.2024.103377 . |
42 | CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. |
43 | SHI R Q, SONG J M. Dynamics and control for an in-plane morphing wing[J]. Aircraft Engineering and Aerospace Technology, 2013, 85(1): 24-31. |
44 | STROE I, CRAIFALEANU A. Generalization of the Lagrange equations formalism, for motions with respect to non-inertial reference frames[J]. Applied Mechanics and Materials, 2014, 656: 171-180. |
45 | MEIROVITCH L, STEMPLE T. Hybrid equations of motion for flexible multibody systems using quasicoordinates[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(4): 678-688. |
46 | 万航, 徐胜利, 张庆振, 等. 基于动态逆的空天变体飞行器姿态控制[J]. 空天防御, 2019, 2(4): 25-31. |
WAN H, XU S L, ZHANG Q Z, et al. Dynamic inversion-based attitude control of aerospace morphing vehicle[J]. Air & Space Defense, 2019, 2(4): 25-31 (in Chinese). | |
47 | AN J G, YAN M, ZHOU W B, et al. Aircraft dynamic response to variable wing sweep geometry[J]. Journal of Aircraft, 1988, 25(3): 216-221. |
48 | FENG L T, GUO T Y, ZHU C H, et al. Control of aerodynamic-driven morphing[J]. Journal of Guidance, Control, and Dynamics, 2022, 46(1): 198-205. |
49 | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. |
RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese). | |
50 | 姚烯. 变形翼飞行器的新型控制算法研究[D]. 南京: 南京航空航天大学, 2014. |
YAO X. Research on new control algorithm of morphing wing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). | |
51 | YAN B B, LI Y, DAI P, et al. Aerodynamic analysis, dynamic modeling, and control of a morphing aircraft[J]. Journal of Aerospace Engineering, 2019, 32(5): 04019058. |
52 | 颜凯. 变体飞机的动力学建模仿真及控制律设计[D]. 南京: 南京航空航天大学, 2013. |
YAN K. Dynamic modeling simulation and control law design of variant aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). | |
53 | SHAO P Y, WU J, WU C F, et al. Model and robust gain-scheduled PID control of a bio-inspired morphing UAV based on LPV method[J]. Asian Journal of Control, 2019, 21(4): 1681-1705. |
54 | GUO T Y, ZHU C H, FENG L T, et al. Aerodynamic-driven morphing aircraft and its overall design[J]. Chinese Journal of Aeronautics, 2024, DOI: 10.1016/j.cja.2024.11.032 . |
55 | LIU W, HUANG C D, YANG G W. Time efficient aeroelastic simulations based on radial basis functions[J]. Journal of Computational Physics, 2017, 330: 810-827. |
56 | HUANG C D, HUANG J, SONG X, et al. Aeroelastic simulation using CFD/CSD coupling based on precise integration method[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(3): 750-767. |
[1] | 刘琛, 何晨, 高文明, 王显峰, 江林, 程硕, 李勇, 肖军. 复合材料飞机副油箱双尺度铺层设计[J]. 航空学报, 2025, 46(1): 230541-230541. |
[2] | 王利平, 王福新, 刘洪. 过冷大水滴环境粒径分布模拟方法研究进展[J]. 航空学报, 2024, 45(S1): 730570-730570. |
[3] | 刘昌昊, 曹义华, 梅晓萌, 汪茂胜, 张广林. 高速直升机运输效能评估[J]. 航空学报, 2024, 45(9): 530182-530182. |
[4] | 黄维康, 张卓然, 达兴亚, 袁培博, 高华敏. 高速对转涵道风扇双驱动电机的热特性[J]. 航空学报, 2024, 45(8): 129048-129048. |
[5] | 陈树生, 贾苜梁, 刘衍旭, 高正红, 向星皓. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595-629595. |
[6] | 陈其昌, 史志伟, 张维源, 姚灵珑, 童晟翔. 展开式变体垂直起降飞行器气动布局与控制策略设计及飞行验证[J]. 航空学报, 2024, 45(6): 629583-629583. |
[7] | 刘柳, 向先宏, 张宇飞, 陈海昕, 魏闯, 朱剑, 杨普. 一种高升阻比非常规翼身融合燕尾气动布局[J]. 航空学报, 2024, 45(6): 629630-629630. |
[8] | 孔垂欢, 吴大卫, 谭兆光, 潘立军, 马茹冰, 司江涛. 三翼面验证机纯电方案设计[J]. 航空学报, 2024, 45(6): 629618-629618. |
[9] | 刘小川, 惠旭龙, 张欣玥, 白春玉, 闫亚斌, 李肖成, 牟让科. 典型民用飞机全机坠撞实验研究[J]. 航空学报, 2024, 45(5): 529664-529664. |
[10] | 司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 529677-529677. |
[11] | 张福泽. 全机日历寿命确定及相关问题[J]. 航空学报, 2024, 45(3): 229863-229863. |
[12] | 李勐, 陈星伊, 陈吉昌, 吴彬, 童明波. 波浪情况下民机水上迫降性能数值分析[J]. 航空学报, 2024, 45(2): 28-43. |
[13] | 李斌, 张泽南, 贾飞, 孙健, 刘彦菊, 冷劲松. 变翼尖机翼技术研究现状与发展趋势[J]. 航空学报, 2024, 45(19): 30042-030042. |
[14] | 张伟, 聂旭涛, 欧李苇, 夏智勋, 陈磊. 基于频率加权的后缘拍动变体机翼流场模态分解[J]. 航空学报, 2024, 45(18): 129846-129846. |
[15] | 李文韬, 方峰, 王振亚, 朱奕超, 彭冬亮. 引入混合超网络改进MADDPG的双机编队空战自主机动决策[J]. 航空学报, 2024, 45(17): 529460-529460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学