| [1] |
张彦军, 王斌团, 宁宇, 等. 基于健康监测的飞机结构寿命预测技术[J]. 航空工程进展, 2024, 15(1): 1-14.
|
|
ZHANG Y J, WANG B T, NING Y, et al. Life prediction technology of aircraft structures based on structural health monitoring[J]. Advances in Aeronautical Science and Engineering, 2024, 15(1): 1-14 (in Chinese).
|
| [2] |
魏元雷, 高飞鹏. 民用飞机结构健康监测系统的设计方法[J]. 计算机测量与控制, 2022, 30(8): 38-43.
|
|
WEI Y L, GAO F P. Architecture design method for structural health monitoring system (SHM) of civil aircraft[J]. Computer Measurement & Control, 2022, 30(8): 38-43 (in Chinese).
|
| [3] |
董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 113-141.
|
|
DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 113-141 (in Chinese).
|
| [4] |
谢克诚, 周轩, 董雷霆. 基于长短期记忆网络与小波变换的直升机飞参-载荷预测[J]. 航空科学技术, 2024, 35(11): 51-57.
|
|
XIE K C, ZHOU X, DONG L T. Flight-parameter-based load prediction of helicopter using LSTM network and wavelet transform[J]. Aeronautical Science & Technology, 2024, 35(11): 51-57 (in Chinese).
|
| [5] |
CANDON M, ESPOSITO M, FAYEK H, et al. Advanced multi-input system identification for next generation aircraft loads monitoring using linear regression, neural networks and deep learning[J]. Mechanical Systems and Signal Processing, 2022, 171: 108809.
|
| [6] |
兑红娜, 王勇军, 董江, 等. 基于飞行参数的飞机结构载荷最优回归模型[J]. 航空学报, 2018, 39(11): 80-89.
|
|
DUI H N, WANG Y J, DONG J, et al. Optimal regression model for aircraft structural load based on flight data[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 80-89 (in Chinese).
|
| [7] |
李文龙, 杨美娟, 唐宁, 等. 某型飞机关键部位结构应变预测[J]. 应用力学学报, 2021, 38(2): 649-654.
|
|
LI W L, YANG M J, TANG N, et al. Structural strain prediction of key parts of an aircraft[J]. Chinese Journal of Applied Mechanics, 2021, 38(2): 649-654 (in Chinese).
|
| [8] |
顾宇轩, 隋福成, 宋恩鹏. 神经网络技术在单机应变寿命监控中的应用研究[J]. 装备环境工程, 2018, 15(12): 74-77.
|
|
GU Y X, SUI F C, SONG E P. Application of neural network technique in individual strain life monitoring[J]. Equipment Environmental Engineering, 2018, 15(12): 74-77 (in Chinese).
|
| [9] |
WANG S, LAI X N, HE X W, et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Mechanical Design, 2022, 144(3): 031703.
|
| [10] |
NOVAIS H C, SILVA S DA, FIGUEIREDO E. Co-Kriging strategy for structural health monitoring of bridges[J]. Structural Health Monitoring, 2024: 14759217241265375.
|
| [11] |
LIU L X, SONG X G, ZHANG C, et al. GAN-MDF: An enabling method for multifidelity data fusion[J]. IEEE Internet of Things Journal, 2022, 9(15): 13405-13415.
|
| [12] |
田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 288-299.
|
|
TIAN K, SUN Z Y, LI Z C. High-precision digital twin method for structural static test monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 288-299 (in Chinese).
|
| [13] |
WANG B, LI Z C, XU Z Y, et al. Digital twin modeling for structural strength monitoring via transfer learning-based multi-source data fusion[J]. Mechanical Systems and Signal Processing, 2023, 200: 110625.
|
| [14] |
XU Z Y, GAO T H, LI Z C, et al. Digital twin modeling method for hierarchical stiffened plate based on transfer learning[J]. Aerospace, 2023, 10(1): 66.
|
| [15] |
黄熠玮, 耿一斌, 高天贺, 等. 数字孪生驱动的结构全场变形高精度反演方法[J/OL]. 航空学报, (2024-10-16) [2025-08-23]. .
|
|
HUANG Y W, GENG Y B, GAO T H, et al. Digital twin driven high precision reconstruction method for full-field deformation of structure[J/OL]. Acta Aeronautica et Astronautica Sinica, (2024-10-16) [2025-08-23]. (in Chinese).
|
| [16] |
HUANG L, XU Z Y, GAO T H, et al. Digital twin-based non-destructive testing method for ultimate load-carrying capacity prediction[J]. Thin-Walled Structures, 2024, 204: 112223.
|
| [17] |
郭聪, 毕清洁, 张澍, 等. 面向空间压紧堆叠结构的数字孪生模态试验方法[J]. 中国空间科学技术(中英文), 2024, 44(6): 72-80.
|
|
GUO C, BI Q J, ZHANG S, et al. Digital twin modal testing method for space compressed stacking structures[J]. Chinese Space Science and Technology, 2024, 44(6): 72-80 (in Chinese).
|
| [18] |
HARTMANN D, HERZ M, WEVER U. Model order reduction a key technology for digital twins[M]. Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing. Cham: Springer International Publishing, 2018: 167-179.
|
| [19] |
ABADÍA-HEREDIA R, LÓPEZ-MARTÍN M, CARRO B, et al. A predictive hybrid reduced order model based on proper orthogonal decomposition combined with deep learning architectures[J]. Expert Systems with Applications, 2022, 187: 115910.
|
| [20] |
崔凯, 杨靖, 常思源, 等. 基于POD和代理模型的高压捕获翼表面流场快速预测方法[J]. 力学学报, 2025, 57(4): 883-894.
|
|
CUI K, YANG J, CHANG S Y, et al. Rapid prediction method for high-pressure capturing wing surface flow field based on proper orthogonal decomposition and surrogate model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 883-894 (in Chinese).
|
| [21] |
VIZZACCARO A, GIVOIS A, LONGOBARDI P, et al. Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements[J]. Computational Mechanics, 2020, 66(6): 1293-1319.
|
| [22] |
刘斌超, 鲁嵩嵩, 曾苇鹏, 等. 从金属材料疲劳性能的力学描述到飞机结构疲劳寿命评定: 现状与展望[J]. 固体力学学报, 2023, 44(4): 417-457.
|
|
LIU B C, LU S S, ZENG W P, et al. From mechanical description for metal fatigue properties to service life evaluation of aircraft structural components: status and challenges[J]. Chinese Journal of Solid Mechanics, 2023, 44(4): 417-457 (in Chinese).
|
| [23] |
ELATTAR H M, ELMINIR H K, RIAD A M. Prognostics: A literature review[J]. Complex & Intelligent Systems, 2016, 2(2): 125-154.
|
| [24] |
WANG H K, HAYNES R, HUANG H Z, et al. The use of high-performance fatigue mechanics and the extended Kalman/particle filters, for diagnostics and prognostics of aircraft structures[J]. CMES-Computer Modeling in Engineering and Sciences, 2015, 105(1): 1-24.
|
| [25] |
BARTRAM G, MAHADEVAN S. Integration of heterogeneous information in SHM models[J]. Structural Control and Health Monitoring, 2014, 21(3): 403-422.
|
| [26] |
ZHANG Q, LIU Y, XIAHOU T, et al. A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities[J]. Reliability Engineering & System Safety, 2023, 235: 109239.
|
| [27] |
CHA G, PARK J, MOON I. Military aircraft flight and maintenance planning model considering heterogeneous maintenance tasks[J]. Reliability Engineering & System Safety, 2023, 239: 109497.
|
| [28] |
JIANG M, HUANG Z Q, QIU L M, et al. Transfer learning-based dynamic multiobjective optimization algorithms[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 501-514.
|
| [29] |
LIM R, GUPTA A, ONG Y S, et al. Non-linear domain adaptation in transfer evolutionary optimization[J]. Cognitive Computation, 2021, 13(2): 290-307.
|
| [30] |
CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016.
|
| [31] |
SHEKHAR S, BANSODE A, SALIM A. A comparative study of hyper-parameter optimization tools[C]∥ 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). Piscataway: IEEE Press, 2021.
|
| [32] |
LI L S, JAMIESON K, DESALVO G, et al. Hyperband: A novel bandit-based approach to hyperparameter optimization[J]. Journal of Machine Learning Research, 2018, 18(185): 1-52.
|
| [33] |
陶雪菲, 王瑞, 高玉魁, 等. 基于DFR法的螺栓连接件疲劳性能研究[J]. 民用飞机设计与研究, 2021(4): 28-36.
|
|
TAO X F, WANG R, GAO Y K, et al. Investigation of fatigue properties of bolted connectors based on detail fatigue rating[J]. Civil Aircraft Design & Research, 2021(4): 28-36 (in Chinese).
|
| [34] |
刘庆刚, 魏青, 韩伟信, 等. 基于有限元法的V型缺口平板应力集中系数研究[J]. 河北工业科技, 2019, 36(4): 240-245.
|
|
LIU Q G, WEI Q, HAN W X, et al. Study of the stress concentration factors of a V-notched plate by using finite element method[J]. Hebei Journal of Industrial Science and Technology, 2019, 36(4): 240-245 (in Chinese).
|
| [35] |
MA H P, ZHANG Y J, SUN S Y, et al. A comprehensive survey on NSGA-II for multi-objective optimization and applications[J]. Artificial Intelligence Review, 2023, 56(12): 15217-15270.
|
| [36] |
HUANG L, ZUO Y H, GUO C, et al. AirLoadBench: An original dataset for flight parameter-based structural load prediction[DB/OL]. Zenodo: 14917880, 2025.
|
| [37] |
HU J C, SZYMCZAK S. A review on longitudinal data analysis with random forest[J]. Briefings in Bioinformatics, 2023, 24(2): 1-11.
|
| [38] |
SALEEM R, YUAN B, KURUGOLLU F, et al. Explaining deep neural networks: A survey on the global interpretation methods[J]. Neurocomputing, 2022, 513: 165-180.
|
| [39] |
VAN HOUDT G, MOSQUERA C, NÁPOLES G. A review on the long short-term memory model[J]. Artificial Intelligence Review, 2020, 53(8): 5929-5955.
|
| [40] |
顾宇轩, 陈亮, 董一飞, 等. 数字孪生驱动的机群寿命精细化管理研究[J/OL]. 航空学报, (2025-02-26) [2025-08-23]. .
|
|
GU Y X, CHEN L, DONG Y F, et al. Research on the refined management of fleet life driven by digital twins[J/OL]. Acta Aeronautica et Astronautica Sinica, (2025-02-26) [2025-08-23]. (in Chinese).
|