| [1] |
陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23(8): 1603-1611.
|
|
TAO F, CHENG Y, CHENG J F, et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems, 2017,23(8): 1603-1611 (in Chinese).
|
| [2] |
陶飞, 张萌, 程江峰, 等. 数字孪生车间: 一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9.
|
|
TAO F, ZHANG M, CHENG J F, et al. Digital twin workshop: A new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9 (in Chinese).
|
| [3] |
李琳利, 李浩, 顾复, 等. 基于数字孪生的复杂机械产品多学科协同设计建模技术[J]. 计算机集成制造系统, 2019, 25(6): 1307-1319.
|
|
LI L L, LI H, GU F, et al. Multidisciplinary collaborative design modeling technologies for complex mechanical products based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019,25(6): 1307-1319 (in Chinese).
|
| [4] |
GRIEVES M, VICKERS J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[M]∥ Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches. Cham: Springer International Publishing, 2017: 85-113.
|
| [5] |
SHAFTO M, CONROY M, DOYLE R, et al. Draft modeling, simulation, information technology & processing roadmap[J]. Technology Area, 2010, 11: 1-32.
|
| [6] |
GRIEVES M. Digital twin: Manufacturing excellence through virtual factory replication[J]. White Paper, 2014, 1: 1-7.
|
| [7] |
陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019,25(1): 1-18.
|
|
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019,25(1): 1-18 (in Chinese).
|
| [8] |
陶飞, 张辰源, 戚庆林, 等. 数字孪生成熟度模型[J]. 计算机集成制造系统, 2022, 28(5): 1267-1281.
|
|
TAO F, ZHANG C Y, QI Q L, et al. Digital twin maturity model[J]. Computer Integrated Manufacturing Systems, 2022,28(5): 1267-1281 (in Chinese).
|
| [9] |
张辰源, 陶飞. 数字孪生模型评价指标体系[J]. 计算机集成制造系统, 2021, 27(8): 2171-2186.
|
|
ZHANG C Y, TAO F. Evaluation index system for digital twin model[J]. Computer Integrated Manufacturing Systems, 2021, 27(8): 2171-2186 (in Chinese).
|
| [10] |
TONG X D, BAO J S, TAO F. Co-evolutionary digital twins: A multidimensional dynamic approach to digital engineering[J]. Advanced Engineering Informatics, 2024, 61: 102554.
|
| [11] |
国家市场监督管理总局, 国家标准化管理委员会. 信息技术 数字孪生第1部分: 通用要求: [S]. 北京: 中国标准出版社, 2023.
|
|
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Information technology—Digital twin: Part 1: General requirements: [S]. Beijing: Standards Press of China, 2023 (in Chinese).
|
| [12] |
ISO/IEC. Digital twin—Concepts and terminology: [S]. Geneva: International Organization for Standardization, 2023.
|
| [13] |
李瑾岳, 张鹏飞, 郭跃成, 等. 基于数字孪生的航空发动机配合界面装配分析[J]. 航空学报, 2024, 45(21): 629800.
|
|
LI J Y, ZHANG P F, GUO Y C, et al. Assembly analysis of aero-engine mating interface based on digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 629800 (in Chinese).
|
| [14] |
YUE G H, DU Z Y, XIU L C, et al. Electric field equivalent method for AC/DC hybrid electric equipment adapted to digital twin with low latency[J]. Electric Power Systems Research, 2022, 213: 108799.
|
| [15] |
IBRAHIM M, RJABTŠIKOV V, JEGOROV S, et al. Conceptual modelling of an EV-permanent magnet synchronous motor digital twin[C]∥ 2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC). New York: IEEE, 2022: 156-160.
|
| [16] |
田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 429134.
|
|
TIAN K, SUN Z Y, LI Z C. High-precision digital twin method for structural static test monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 429134 (in Chinese).
|
| [17] |
YANG Y, CHEN Z, YAN J, et al. State evaluation of power transformer based on digital twin[C]∥ 2019 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). Piscataway: IEEE, Press 2019: 230-235.
|
| [18] |
BOOYSE W, WILKE D N, HEYNS S. Deep digital twins for detection, diagnostics and prognostics[J]. Mechanical Systems and Signal Processing, 2020, 140: 106612.
|
| [19] |
KHARLAMOVA N, TRÆHOLT C, HASHEMI S. A digital twin of battery energy storage systems providing frequency regulation[C]∥ 2022 IEEE International Systems Conference (SysCon). Piscataway: IEEE Press, 2022: 1-7.
|
| [20] |
GUO H Y, WANG S P, SHI J, et al. Dynamically updated digital twin for prognostics and health management: Application in permanent magnet synchronous motor[J]. Chinese Journal of Aeronautics, 2024, 37(6): 244-261.
|
| [21] |
李春华, 孙见忠, 陆纪龙. 面向运维的HPT叶片寿命数字孪生建模方法[J]. 航空学报, 2024, 45(21): 629385.
|
|
LI C H, SUN J Z, LU J L. Maintenance-oriented approach for HPT blade life digital twin modeling[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 629385 (in Chinese).
|
| [22] |
郭丞皓, 于劲松, 宋悦, 等. 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报, 2023, 44(11): 227629.
|
|
GUO C H, YU J S, SONG Y, et al. Application of digital twin-based aircraft landing gear health management technology[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 227629 (in Chinese).
|
| [23] |
PILTAN F, KIM J M. Bearing anomaly recognition using an intelligent digital twin integrated with machine learning[J]. Applied Sciences, 2021, 11(10): 4602.
|
| [24] |
黄熠玮, 耿一斌, 高天贺, 等. 数字孪生驱动的结构全场变形高精度反演方法[J]. 航空学报, 2025, 46(19):530967.
|
|
HUANG Y W, GENG Y B, GAO T H, et al. Digital twin driven high precision reconstruction method for full-field deformation of structure[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 530967 (in Chinese).
|
| [25] |
HENDERSON K, SALADO A. Value and benefits of model-based systems engineering (MBSE): Evidence from the literature[J]. Systems Engineering, 2021, 24(1): 51-66.
|
| [26] |
DORI D. Model-based systems engineering with OPM and SysML[M]. Cham: Springer New York, 2016.
|