| [1] FALLON T, MAHAL D, HEBDEN I. F-35 Joint strike fighter structural prognostics and health management: An overview[C]//Proceedings of the 25th Symposium of the International Committee on Aeronautical Fatigue. 2009: 1215-9.
[2] 魏元雷, 高飞鹏. 民用飞机结构健康监测系统的设计方法[J]. 计算机测量与控制, 2022, 30(08): 38-43.
WEI Y L, GAO F P. Architecture design method for structural health monitoring system (SHM) of civil air-craft [J]. Computer Measurement & Control, 2022, 30(8): 38-43 (in Chinese).
[3] PAPAKOSTAS N, PAPACHATZAKIS P, XANTHAKIS V, et al. An approach to operational air-craft maintenance planning[J]. Decision Support Sys-tems, 2010, 48(4): 604-612.
[4] 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(03): 113-141.
DONG L T, ZHOU X, ZHAO F B, et al. Key technol-ogies for modeling and simulation of airframe digital twin [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 023981 (in Chinese).
[5] HAAS D J, IMBER R. Identification of helicopter component loads using multiple regression[J]. Journal of Aircraft, 1994, 31(4): 929-935.
[6] HALLE M, THIELECKE F, LINDENAU O. Compari-son of real-time flight loads estimation methods[J]. CEAS Aeronautical Journal, 2014, 5: 501-513.
[7] 兑红娜, 王勇军, 董江, 等. 基于飞行参数的飞机结构载荷最优回归模型[J]. 航空学报, 2018, 39(11): 80-89.
DUIH N, WANG Y J, DONG J, et al. Optimal regres-sion model for aircraft structural load based on flight data [J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 222158 (in Chinese).
[8] 李文龙, 杨美娟, 唐宁, 等. 某型飞机关键部位结构应变预测[J]. 应用力学学报, 2021, 38(02): 649-654.
LI W L, YANG M J, TANG N, et al. Structural strain prediction of key parts of an aircraft [J]. Chinese Jour-nal of Applied Mechanics, 2021, 38(2): 649-654 (in Chinese).
[9] 顾宇轩, 隋福成, 宋恩鹏. 神经网络技术在单机应变寿命监控中的应用研究[J]. 装备环境工程, 2018, 15(12): 74-77.
GU Y X, SUI F C, SONG E P. Application of neural network technique in individual strain life monitoring [J]. Equipment Environmental Engineering, 2018, 15(12): 74-77 (in Chinese).
[10] WANG S, LAI X, HE X, et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Me-chanical Design, 2022, 144(3).
[11] LE GRATIET L, GARNIER J. Recursive co-kriging model for design of computer experiments with multi-ple levels of fidelity[J]. International Journal for Uncer-tainty Quantification, 2014, 4(5).
[12] LIU L, SONG X, ZHANG C, et al. GAN-MDF: An enabling method for multifidelity data fusion[J]. IEEE Internet of Things Journal, 2022, 9(15): 13405-13415.
[13] 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的 高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 288-299.
TIAN K, SUN Z Y, LI Z C. High-precision digital twin method for structural static test monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 288-299 (in Chinese).
[14] WANG B, LI Z, XU Z, et al. Digital twin modeling for structural strength monitoring via transfer learning-based multi-source data fusion[J]. Mechanical Systems and Signal Processing, 2023, 200: 110625.
[15] XU Z, GAO T, LI Z, et al. Digital twin modeling method for hierarchical stiffened plate based on trans-fer learning[J]. Aerospace, 2023, 10(1): 66.
[16] 黄熠玮, 耿一斌, 高天贺, 等. 数字孪生驱动的结构全场变形高精度反演方法[J/OL]. 航空学报, 1-12 [2025-05-31]. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2024.30967.
HUANG Y W, GENG Y B, GAO T H, et al. Digital twin driven high precision reconstruction method for full-field deformation of structure[J/OL]. Acta Aero-nautica et Astronautica Sinica, 1-12 [2025-05-31]. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2024.30967 (in Chinese).
[17] HUANG L, XU Z, GAO T, et al. Digital twin-based non-destructive testing method for ultimate load-carrying capacity prediction[J]. Thin-Walled Structures, 2024, 204: 112223.
[18] 郭聪, 毕清洁, 张澍, 等. 面向空间压紧堆叠结构的数字孪生试验方法[J]. 中国空间科学技术(中英文), 2024, 44(6): 72-80.
GUO C, BI Q J, ZHANG S, et al. Digital twin modal test method for space compressed stacking structures[J]. Chinese Space Science and Technology, 2024, 44(6): 72-80 (in Chinese).
[19] HARTMANN D, HERZ M, WEVER U. Model order reduction a key technology for digital twins[J]. Re-duced-Order Modeling (ROM) for Simulation and Op-timization: Powerful Algorithms as Key Enablers for Scientific Computing, 2018: 167-179.
[20] FEENY B, KAPPAGANTU R. On the physical inter-pretation of proper orthogonal modes in vibrations[J]. Journal of Sound and Vibration, 1998, 211(4): 607-616.
[21] 邱亚松, 白俊强, 华俊. 基于本征正交分解和代理模型的流场预测方法[J]. 航空学报, 2013, 34(6): 1249-1260.
QIU Y S, BAI J Q, HUA J. Flow field estimation method based on proper orthogonal decomposition and surrogate model. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1249-1260 (in Chinese).
[22] VIZZACCARO A, GIVOIS A, LONGOBARDI P, et al. Non-intrusive reduced order modelling for the dynam-ics of geometrically nonlinear flat structures using three-dimensional finite elements[J]. Computational Mechanics, 2020, 66: 1293-1319.
[23] 刘斌超, 鲁嵩嵩, 曾苇鹏, 等. 从金属材料疲劳性能的力学描述到飞机结构疲劳寿命评定:现状与展望[J]. 固体力学学报, 2023, 44(04): 417-457.
LIU B C, LU S S, ZENG W P, et al. From mechanical description for metal fatigue properties to service life evaluation of aircraft structural components: status and challenges [J]. Chinese Journal of Solid Mechanics, 2023, 44(4): 417-457 (in Chinese).
[24] ELATTAR H M, ELMINIR H K, RIAD A M. Prognos-tics: a literature review[J]. Complex & Intelligent Sys-tems, 2016, 2(2): 125-154.
[25] WANG H K, HAYNES R, HUANG H Z, et al. The use of high-performance fatigue mechanics and the extend-ed Kalman/particle filters, for diagnostics and prognos-tics of aircraft structures[J]. CMES: Computer Model-ing in Engineering & Sciences, 2015, 105(1): 1-24.
[26] BARTRAM G, MAHADEVAN S. Integration of heter-ogeneous information in SHM models[J]. Structural Control and Health Monitoring, 2014, 21(3): 403-422.
[27] MATTILA V, VIRTANEN K. Maintenance scheduling of a fleet of fighter aircraft through multi-objective simulation-optimization[J]. Simulation, 2014, 90(9): 1023-1040.
[28] SAFAEI N, BANJEVIC D, JARDINE A K S. Work-force-constrained maintenance scheduling for military aircraft fleet: a case study[J]. Annals of Operations Re-search, 2011, 186(1): 295-316.
[29] JIANG M, HUANG Z, QIU L, et al. Transfer learning-based dynamic multiobjective optimization algo-rithms[J]. IEEE Transactions on Evolutionary Compu-tation, 2017, 22(4): 501-514.
[30] LIM R, GUPTA A, ONG Y S, et al. Non-linear domain adaptation in transfer evolutionary optimization[J]. Cognitive Computation, 2021, 13: 290-307.
[31] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining. 2016: 785-794.
[32] BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for hyper-parameter optimization[J]. Ad-vances in Neural Information Processing Systems, 2011, 24.
[33] LI L, JAMIESON K, DESALVO G, et al. Hyperband: A novel bandit-based approach to hyperparameter op-timization[J]. Journal of Machine Learning Research, 2018, 18(185): 1-52.
[34] 郑晓玲. 民机结构耐久性与损伤容限设计手册·上册,疲劳设计与分析[M]. 航空工业出版社, 2003: 1-15.
ZHENG X L. Durability and damage tolerance design for civil aircraft structures - previous book, fatigue de-sign and analysis [M]. Aviation Industry Press, 2003: 1-15 (in Chinese).
[35] HUANG L, ZUO Y, GUO C, et al. AirLoadBench: An original dataset for flight parameter-based structural load prediction (2025-05-14) [DB/OL]. Zenodo, 2025 [2025-05-31]. https://doi.org/10.5281/zenodo.14917880.
[36] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32.
[37] NIELSEN M A. Neural networks and deep learning[M]. San Francisco, CA, USA: Determination Press, 2015.
[38] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[39] 顾宇轩, 陈亮, 董一飞, 等. 数字孪生驱动的机群寿命精细化管理研究[J/OL]. 航空学报, 1-10 [2025-05-31]. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2025.31290.
GU Y X, CHEN L, DONG Y F. Research on the re-fined management of fleet life driven by digital twins[J/OL]. Acta Aeronautica et Astronautica Sinica, 1-10 [2025-05-31]. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2025.31290 (in Chinese).
[40] DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]//International Con-ference on Parallel Problem Solving From Nature, Par-is, France. 2000: 849-858. |