航空学报 > 2026, Vol. 47 Issue (2): 132104-132104   doi: 10.7527/S1000-6893.2025.32104

基于流热固耦合仿真的航空发动机暖机特性及其对推力的影响

邵发宁1, 杨超1, 陈娉婷1, 王飞龙1, 赵伟辰2, 宁博2, 毛军逵1()   

  1. 1.南京航空航天大学 能源与动力学院,南京 210016
    2.中国航发沈阳发动机研究所,沈阳 110015
  • 收稿日期:2025-04-10 修回日期:2025-05-06 接受日期:2025-07-02 出版日期:2025-07-16 发布日期:2025-07-15
  • 通讯作者: 毛军逵 E-mail:mjkpe@nuaa.edu.cn
  • 基金资助:
    国家级项目

Warm-up characteristics and thrust impact of aero-engines based on fluid-thermal-solid coupled simulation

Faning SHAO1, Chao YANG1, Pingting CHEN1, Feilong WANG1, Weichen ZHAO2, Bo NING2, Junkui MAO1()   

  1. 1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.AECC Shenyang Engine Research Institute,Shenyang 110015,China
  • Received:2025-04-10 Revised:2025-05-06 Accepted:2025-07-02 Online:2025-07-16 Published:2025-07-15
  • Contact: Junkui MAO E-mail:mjkpe@nuaa.edu.cn
  • Supported by:
    National Level Project

摘要:

航空发动机在起飞前需要在地面保持较高转速进行暖机,否则将造成起飞过程中的推力下降。针对上述问题,以小涵道比涡扇发动机核心机为对象,结合发动机流体域一维模型和固体域二维轴对称有限元模型,开发了一种流热固耦合计算方法,实现了发动机主流道、空气系统和多部件热分析及变形分析的跨尺度耦合仿真。仿真结果表明:叶尖间隙大于设计值是造成起飞阶段发动机推力下降的主要原因。暖机能够减小起飞过程中的叶尖间隙,高压涡轮效率提升0.85%,压气机效率提升0.5%,进而促使高压转速最大提升0.51%,增大了核心机流量,降低了发动机的涵道比,最终导致发动机起飞阶段的最小推力上升2.4%。研究结果进一步表明,增加暖机时间或增加暖机转速均可提升起飞推力,但暖机转速小于0.75时无法通过增加转速减小高压涡轮叶尖间隙。最后基于序列二次规划算法,构建了以推力需求为约束条件的暖机参数优化模型,实现了不同工况下最短暖机时间与转速的优化。

关键词: 涡扇发动机, 暖机, 叶尖间隙, 流热固耦合, 过渡态

Abstract:

Aero-engine requires maintaining high rotational speeds for warm-up operations prior to takeoff; otherwise, thrust degradation may occur during the climb-out phase. To address this issue, this study focuses on a core engine of a small-bypass-ratio turbofan and develops a fluid-thermal-solid coupling computational methodology that integrates a 1D fluid domain model with a 2D axisymmetric finite element model of the solid structure. This approach enables coupled simulation across different scales for solid domain analysis, air system evaluation, multi-component thermal analysis, and deformation prediction. Simulation results reveal that tip clearance exceeding design specifications constitutes the primary cause of thrust reduction during takeoff. Warm-up operations effectively reduce tip clearances, resulting in a 0.85% improvement in high-pressure turbine efficiency and a 0.5% enhancement in compressor efficiency. These improvements drive a maximum 0.51% increase in high-pressure rotor speed, augment core mass flow, reduce engine bypass ratio, and ultimately elevate minimum takeoff thrust by 2.4%. Further analysis demonstrates that either extending warm-up duration or increasing warm-up rotational speed can enhance takeoff thrust. However, when the warm-up speed remains below 0.75, increasing rotational speed fails to effectively reduce high-pressure turbine tip clearance. Finally, leveraging sequential quadratic programming optimization, a warm-up parameter optimization model constrained by thrust requirements is established to achieve optimal combinations of minimum warm-up time and rotational speed across various operational conditions.

Key words: turbofan engine, warm-up, tip clearance, fluid-thermal-solid coupling, transient state

中图分类号: