徐义皓1(
), 董芃呈2, 郑俊超1, 谭春青1, 唐海龙3
收稿日期:2024-07-23
修回日期:2024-08-20
接受日期:2024-09-23
出版日期:2024-10-11
发布日期:2024-10-11
通讯作者:
徐义皓
E-mail:xuyihao@mail.tsinghua.edu.cn
基金资助:
Yihao XU1(
), Pengcheng DONG2, Junchao ZHENG1, Chunqing TAN1, Hailong TANG3
Received:2024-07-23
Revised:2024-08-20
Accepted:2024-09-23
Online:2024-10-11
Published:2024-10-11
Contact:
Yihao XU
E-mail:xuyihao@mail.tsinghua.edu.cn
Supported by:摘要:
自适应循环发动机具有强的流量调节能力,通过维持流量降低进气道外流阻力,改善推进系统性能,其性能提升的实现离不开发动机和进排气系统的综合优化设计。然而,发动机总体方案论证前期往往仅对发动机本身开展优化设计,忽略了进排气系统对发动机匹配状态的影响,难以确定推进系统最优状态与发动机最优状态的一致性,而两者最优状态的异同性则决定了设计过程引入模型的复杂度和优化优先级。基于此,开展以多控制变量和多工作模式的自适应循环发动机为研究对象的推进系统总体性能优化方法研究。首先,构建自适应循环发动机的总体性能计算模型和安装性能计算模型;其次,针对不同构型的进气道和喷管,开展关键设计参数对安装损失的影响研究并进行安装性能评估,优选最佳的进排气系统构型和参数;最后,发展一种基于随机搜索算法和回归分析的推进系统总体性能优化方法,建立了两种获得推进系统性能的快速优化方法:第1种是优化发动机性能后计算安装性能,第2种是直接优化推进系统安装性能,并开展两种方法下巡航节流特性和速度-高度特性优化设计对比。通过对巡航状态最优节流特性和不同速度高度最大推力特性的回归拟合精度分析及重合度对比,发现巡航状态两种方法最优节流特性线的均方根误差最大约为0.01,两种方法最优速度-高度特性的均方根误差为0。由此表明,发动机的最优匹配状态可以表征推进系统的最优匹配状态,因此方案论证阶段无需引入进排气系统来保证推进系统的最优性,极大简化了方案设计的模型复杂度。利用该设计方法可以针对不同构型的自适应循环发动机开展推进系统性能的快速优化设计,具有很强的工程指导意义和应用价值。
中图分类号:
徐义皓, 董芃呈, 郑俊超, 谭春青, 唐海龙. 自适应循环推进系统总体性能优化方法[J]. 航空学报, 2025, 46(7): 130987.
Yihao XU, Pengcheng DONG, Junchao ZHENG, Chunqing TAN, Hailong TANG. Overall performance optimization method of adaptive cycle propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 130987.
表 12
Ma=0.9以下速度-高度特性两种方法曲面拟合方程关键参数
| 多项式系数 | 方法1 | 方法2 |
|---|---|---|
| RMSE | 0 | |
| p00 | 17 210.000 | 17 210.000 |
| p10 | 1 226.000 | 1 226.000 |
| p01 | -1 874.000 | -1 874.000 |
| p20 | 1 850.000 | 1 850.000 |
| p11 | 69.680 | 69.680 |
| p02 | 54.240 | 54.240 |
| p30 | 17 550.000 | 17 550.000 |
| p21 | -937.000 | -937.000 |
| p12 | -53.920 | -53.920 |
| p03 | 8.531 | 8.531 |
| p40 | -13 710.000 | -13 710.000 |
| p31 | 133.300 | 133.300 |
| p22 | -64.430 | -64.430 |
| p13 | 14.850 | 14.850 |
| p04 | -1.323 | -1.323 |
| p50 | 205.100 | 205.100 |
| p41 | 1 453.000 | 1 453.000 |
| p32 | -194.700 | -194.700 |
| p23 | 16.510 | 16.510 |
| p14 | -1.088 | -1.088 |
| p05 | 0.057 | 0.057 |
| R2 | 0.999 9 | 0.999 9 |
| 1 | 陈大光, 张津. 飞机-发动机性能匹配与优化[M]. 北京: 北京航空航天大学出版社, 1990. |
| CHEN D G, ZHANG J. Aircraft-engine performance matching and optimization[M]. Beijing: Beihang University Press, 1990 (in Chinese). | |
| 2 | ALLAN R. General Electric Company variable cycle engine technology demonstrator programs[C]∥Proceedings of the 15th Joint Propulsion Conference. Reston: AIAA, 1979. |
| 3 | 陈敏, 张纪元, 唐海龙, 等. 自适应循环发动机总体设计技术探讨[J]. 航空动力学报, 2022, 37(10): 2046-2058. |
| CHEN M, ZHANG J Y, TANG H L, et al. Discussion on overall performance design technology of adaptive cycle engine[J]. Journal of Aerospace Power, 2022, 37(10): 2046-2058 (in Chinese). | |
| 4 | CHEN M, ZHANG J Y, TANG H L. Performance analysis of a three-stream adaptive cycle engine during throttling[J]. International Journal of Aerospace Engineering, 2018, 2018: 9237907. |
| 5 | General Electric Company. XA100 adaptive cycle engine: A new era of combat propulsion [EB/OL]. (2024-02-02) [2024-07-23]. . |
| 6 | ZHENG J C, CHEN M, TANG H L. Matching mechanism analysis on an adaptive cycle engine[J]. Chinese Journal of Aeronautics, 2017, 30(2): 706-718. |
| 7 | MENG X, ZHU Z L, CHEN M, et al. A matching problem between the front fan and aft fan stages in adaptive cycle engines with convertible fan systems[J]. Energies, 2021, 14(4): 840. |
| 8 | ZHENG J C, TANG H L, CHEN M, et al. Equilibrium running principle analysis on an adaptive cycle engine[J]. Applied Thermal Engineering, 2018, 132: 393-409. |
| 9 | 李斌, 陈敏, 朱之丽, 等. 自适应循环发动机不同工作模式稳态特性研究[J]. 推进技术, 2013, 34(8): 1009-1015. |
| LI B, CHEN M, ZHU Z L, et al. Steady performance investigation on various modes of an adaptive cycle aero-engine[J]. Journal of Propulsion Technology, 2013, 34(8): 1009-1015 (in Chinese). | |
| 10 | 郑俊超, 唐海龙, 陈敏, 等. 自适应循环发动机典型工况不同工作模式性能对比研究[J]. 工程热物理学报, 2022, 43(7): 1743-1750. |
| ZHENG J C, TANG H L, CHEN M, et al. Operating modes performance comparison research in typical working conditions on an adaptive cycle engine[J]. Journal of Engineering Thermophysics, 2022, 43(7): 1743-1750 (in Chinese). | |
| 11 | GRÖNSTEDT U T J, PILIDIS P. Control optimization of the transient performance of the selective bleed variable cycle engine during mode transition[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 75-81. |
| 12 | 郑俊超, 罗艺伟, 唐海龙, 等. 自适应循环发动机模式转换过渡态控制规律设计方法研究[J]. 推进技术, 2022, 43(11): 210607. |
| ZHENG J C, LUO Y W, TANG H L, et al. Design method research of mode switch transient control schedule on adaptive cycle engine[J]. Journal of Propulsion Technology, 2022, 43(11): 210607 (in Chinese). | |
| 13 | XU Y H, TANG H L, CHEN M. Design method of optimal control schedule for the adaptive cycle engine steady-state performance[J]. Chinese Journal of Aeronautics, 2022, 35(4): 148-164. |
| 14 | LYU Y, TANG H L, CHEN M. A study on combined variable geometries regulation of adaptive cycle engine during throttling[J]. Applied Sciences, 2016, 6(12): 374. |
| 15 | ZHENG J C, TANG H L, CHEN M. Optimal matching control schedule research on an energy system[J]. Energy Procedia, 2019, 158: 1685-1693. |
| 16 | 韩佳, 王靖凯, 梁彩云, 等. 三外涵变循环发动机推力性能优化计算及分析[J]. 航空动力学报, 2018, 33(2): 338-344. |
| HAN J, WANG J K, LIANG C Y, et al. Thrust performance optimization calculation and analysis of triple bypass variable cycle engine[J]. Journal of Aerospace Power, 2018, 33(2): 338-344 (in Chinese). | |
| 17 | 杨宇飞. 自适应循环发动机建模及控制规律研究[D]. 南京: 南京航空航天大学, 2017. |
| YANG Y F. Research on modeling and control law of adaptive cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese). | |
| 18 | JIA L Y, CHEN Y C, CHENG R H, et al. Designing method of acceleration and deceleration control schedule for variable cycle engine[J]. Chinese Journal of Aeronautics, 2021, 34(5): 27-38. |
| 19 | 周红. 变循环发动机特性分析及其与飞机一体化设计研究[D]. 西安: 西北工业大学, 2016. |
| ZHOU H. Investigation on the variable cycle engine characteristics and integration design with aircraft[D]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
| 20 | 马松, 谭建国, 王光豪, 等. 基于飞发一体化的自适应循环发动机参数优化研究[J]. 推进技术, 2018, 39(8): 1703-1711. |
| MA S, TAN J G, WANG G H, et al. Study on characteristics optimization of adaptive cycle engine based on aircraft-engine integrated analysis[J]. Journal of Propulsion Technology, 2018, 39(8): 1703-1711 (in Chinese). | |
| 21 | 王一凡, 陈浩颖, 张海波. 面向巡航任务的自适应循环发动机进/发匹配[J]. 航空学报, 2024, 45(2): 128637. |
| WANG Y F, CHEN H Y, ZHANG H B. Inlet/engine matching of adaptive cycle engine for cruise mission[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128637 (in Chinese). | |
| 22 | 许哲文, 唐海龙, 陈敏, 等. 基于混合维度仿真的自适应循环发动机引射喷管安装性能研究[J]. 推进技术, 2023, 44(9): 2207083. |
| XU Z W, TANG H L, CHEN M, et al. Installed performance of adaptive cycle engine ejector nozzle based on multi-fidelity simulation[J]. Journal of Propulsion Technology, 2023, 44(9): 2207083 (in Chinese). | |
| 23 | RICHEY G K, SURBER L E, BERRIER B L. Airframe-propulsion integration for fighter aircraft[C]∥Proceedings of the 21st Aerospace Sciences Meeting. Reston: AIAA, 1983. |
| 24 | HALE A L, DAVIS M, SIRBAUGH J. A numerical simulation capability for analysis of aircraft inlet-engine compatibility[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 473-481. |
| 25 | BEALE D, COLLIER M S. Validation of a free-jet technique for evaluating inlet-engine compatibility[C]∥Proceedings of the 25th Joint Propulsion Conference. Reston: AIAA, 1989. |
| 26 | ANDERSON J. Airframe/propulsion integration of supersonic cruise vehicles[C]∥Proceedings of the 26th Joint Propulsion Conference. Reston: AIAA, 1990. |
| 27 | WILSON J, WRIGHT B. Airframe/engine integration with variable cycle engines[C]∥Proceedings of the 13th Joint Propulsion Conference. Reston: AIAA, 1977. |
| 28 | MACE J, NYBERG G. Fighter airframe/propulsion integration-A McDonnell aircraft perspective[C]∥Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
| 29 | MISHLER R, WILKINSON T. Emerging airframe/propulsion integration technologies at General Electric[C]∥Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
| 30 | 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6): 524057. |
| WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524057 (in Chinese). | |
| 31 | 金捷. 美国推进系统数值仿真(NPSS)计划综述[J]. 燃气涡轮试验与研究, 2003, 16(1): 57-62. |
| JIN J. A summary of numerical propulsion simulation system(NPSS)by NASA[J]. Gas Turbine Experiment and Research, 2003, 16(1): 57-62 (in Chinese). | |
| 32 | CURLETT B P, FELDER J. Object-oriented approach for gas turbine engine simulation: NASA-TM-106970[R]. Washington, D.C.: NASA, 1995. |
| 33 | 朱之丽. 航空燃气涡轮发动机工作原理及性能[M]. 上海: 上海交通大学出版社, 2014. |
| ZHU Z L. Working principle and performance of aircraft gas turbine engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014 (in Chinese). | |
| 34 | DAS S, SUGANTHAN P N. Differential evolution: A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31. |
| 35 | STORN R, PRICE K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
| 36 | KOWALSKI E J, ATKINS R A. A computer code for estimating installed performance of aircraft gas turbine engines Vol.Ⅲ-library of inlet/nozzle configurations and performance maps: NASA-CR-159693[R]. Washington, D.C.: NASA, 1979. |
| [1] | 王一凡, 陈浩颖, 张海波. 面向巡航任务的自适应循环发动机进/发匹配[J]. 航空学报, 2024, 45(2): 128637-128637. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

