| [1] |
VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: A brief review[J]. Computational Intelligence and Neuroscience, 2018(1): 7068349.
|
| [2] |
ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
|
| [3] |
杨旭. 遥感图像目标检测技术研究[D]. 郑州: 战略支援部队信息工程大学, 2023: 1.
|
|
YANG X. Research on object detection technology in remote sensing images[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2023: 1 (in Chinese).
|
| [4] |
欧冬秀. 交通信息技术[M]. 上海: 同济大学出版社, 2007: 9-26.
|
|
OU D X. Transportation information technologies[M]. Shanghai: Tongji University Press, 2007: 9-26 (in Chinese).
|
| [5] |
常嘉伟. 基于深度学习的飞机目标检测与跟踪系统的设计与实现[D]. 北京: 北京邮电大学, 2022: 1-2.
|
|
CHANG J W. Design and implementation of aircraft target detection and tracking system based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2022: 1-2 (in Chinese).
|
| [6] |
方浩文, 施华君. 基于深度学习的卫星图像识别分类方法[J]. 计算机系统应用, 2019, 28(10): 27-34.
|
|
FANG H W, SHI H J. Satellite image recognition and classification method based on deep learning[J]. Computer Systems & Applications, 2019, 28(10): 27-34 (in Chinese).
|
| [7] |
薛振锋. 合成数据集的生成与优化方法及其在岩渣分析中的应用[D]. 杭州: 浙江大学, 2021: 1-2.
|
|
XUE Z F. Generation and optimization of synthetic dataset and its application in rock analysis[D]. Hangzhou: Zhejiang University, 2021: 1-2 (in Chinese).
|
| [8] |
韩俊. 基于深度学习的遥感图像车辆检测[D]. 徐州: 中国矿业大学, 2023: 5-7.
|
|
HAN J. Deep learning-based vehicle detection for remote sensing images[D]. Xuzhou: China University of Mining and Technology, 2023: 5-7 (in Chinese).
|
| [9] |
YANG X, SUN H, SUN X, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6: 50839-50849.
|
| [10] |
CHENG G, SI Y J, HONG H L, et al. Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 431-435.
|
| [11] |
XIE L C, XUE Y L, YE J Z. UAV aerial photography target detection algorithm based on improved YOLOv5[C]∥2022 International Conference on Machine Vision, Automatic Identification and Detection. 2022: 012024.
|
| [12] |
CHEN T X, YE Z, TAN Z T, et al. MiM-ISTD: Mamba-in-mamba for efficient infrared small-target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5007613.
|
| [13] |
LIU B, CHEN S B, WANG J X, et al. An oriented object detector for hazy remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1001711.
|
| [14] |
CUBUK E D, ZOPH B, MANÉ D, et al. AutoAugment: Learning augmentation strategies from data[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 113-123.
|
| [15] |
ZOPH B, CUBUK E D, GHIASI G, et al. Learning data augmentation strategies for object detection[C]∥Computer Vision-ECCV 2020. Cham: Springer, 2020: 566-583.
|
| [16] |
KIM J M, JANG J Y, SEO S, et al. MUM: Mix image tiles and UnMix feature tiles for semi-supervised object detection[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 14492-14501.
|
| [17] |
ROS G, SELLART L, MATERZYNSKA J, et al. The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 3234-3243.
|
| [18] |
TREMBLAY J, PRAKASH A, ACUNA D, et al. Training deep networks with synthetic data: Bridging the reality gap by domain randomization[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2018: 10820-10828.
|
| [19] |
PRAKASH A, BOOCHOON S, BROPHY M, et al. Structured domain randomization: Bridging the reality gap by context-aware synthetic data[C]∥2019 International Conference on Robotics and Automation. Piscataway: IEEE Press, 2019: 7249-7255.
|
| [20] |
KIM J H, HWANG Y. GAN-based synthetic data augmentation for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5002512.
|
| [21] |
MNHI V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[DB/OL]. arXiv: arXiv:1312. 5602, 2013.
|
| [22] |
WATKINS C J C H, DAYAN P. Q-learning[J]. Machine Learning, 1992, 8: 279-292.
|
| [23] |
ZOU Z X, LI W Y, SHI T Y, et al. Generative adversarial training for weakly supervised cloud matting[C]∥2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 201-210.
|
| [24] |
LI W Y, ZOU Z X, SHI Z W. Deep matting for cloud detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8490-8502.
|
| [25] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
|
| [26] |
XIA G S, BAI X, DING J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3974-3983.
|
| [27] |
CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: Survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488.
|
| [28] |
DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 2844-2853.
|
| [29] |
ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]∥2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2024: 16965-16974.
|
| [30] |
QIU S H, WEN G J, FAN Y X. Occluded object detection in high-resolution remote sensing images using partial configuration object model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 1909-1925.
|