| [1] |
江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(4): 524519.
|
|
JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524519 (in Chinese).
|
| [2] |
欧阳权, 张怡, 马延, 等. 基于深度学习的无人机航拍目标检测与跟踪方法综述[J]. 电光与控制, 2024, 31(3): 1-7.
|
|
OUYANG Q, ZHANG Y, MA Y, et al. A review of UAV aerial photography target detection and tracking methods based on deep learning[J]. Electronics Optics & Control, 2024, 31(3): 1-7 (in Chinese).
|
| [3] |
赵禄达, 胡以华, 赵楠翔, 等. LiDAR点云深度学习模型的压缩和部署加速方法 研究现状与展望(特邀)[J]. 激光与光电子学进展, 2024, 61(20): 2011005.
|
|
ZHAO L D, HU Y H, ZHAO N X, et al. Review of model compression and accelerated development for deep learning in LiDAR point cloud processing (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(20): 2011005 (in Chinese).
|
| [4] |
CHEN F H, LI S L, HAN J L, et al. Review of lightweight deep convolutional neural networks[J]. Archives of Computational Methods in Engineering, 2024, 31(4): 1915-1937.
|
| [5] |
王军, 冯孙铖, 程勇. 深度学习的轻量化神经网络结构研究综述[J]. 计算机工程, 2021, 47(8): 1-13.
|
|
WANG J, FENG S C, CHENG Y. Survey of research on lightweight neural network structures for deep learning[J]. Computer Engineering, 2021, 47(8): 1-13 (in Chinese).
|
| [6] |
SIFRE L, MALLAT S. Rigid-motion scattering for texture classification[DB/OL]. arXiv preprint: 1403.1687, 2014.
|
| [7] |
HOWARD A G, ZHU M L, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[DB/OL]. arXiv preprint: 1704.04861, 2017.
|
| [8] |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4510-4520.
|
| [9] |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6848-6856.
|
| [10] |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: More features from cheap operations[C]∥ 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 1577-1586.
|
| [11] |
VASU P K A, GABRIEL J, ZHU J, et al. MobileOne:An improved one millisecond mobile backbone[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 7907-7917.
|
| [12] |
HAN S, MAO H Z, DALLY W J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding[DB/OL]. arXiv preprint: 1510.00149, 2015.
|
| [13] |
LIU X C, YE M, ZHOU D Y, et al. Post-training quantization with multiple points: Mixed precision without mixed precision[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(10): 8697-8705.
|
| [14] |
NAGEL M, AMJAD R A, VAN BAALEN M, et al. Up or down? Adaptive rounding for post-training quantization[C]∥Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 7197-7206.
|
| [15] |
YUAN Z H, XUE C H, CHEN Y Q, et al. PTQ4ViT: Post-training quantization for vision transformers withtwin uniform quantization[C]∥Computer Vision-ECCV 2022. Cham: Springer, 2022: 191-207.
|
| [16] |
ESSER S K, MCKINSTRY J L, BABLANI D, et al. Learned step size quantization[DB/OL]. arXiv preprint:1902.08153, 2019.
|
| [17] |
BHALGAT Y, LEE J, NAGEL M, et al. LSQ+: Improving low-bit quantization through learnable offsets and better initialization[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2020: 2978-2985.
|
| [18] |
CHOI J, WANG Z, VENKATARAMANI S, et al. Pact: Parameterized clipping activation for quantized neural networks[DB/OL]. arXiv preprint: 1805.06085, 2018.
|
| [19] |
LIU Z C, CHENG K T, HUANG D, et al. Nonuniform-to-uniform quantization: Towards accurate quantization via generalized straight-through estimation[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 4932-4942.
|
| [20] |
ZHU K, HE Y Y, WU J X. Quantized feature distillation for network quantization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(9): 11452-11460.
|
| [21] |
MUSA A, KAKUDI H A, HASSAN M, et al. Lightweight deep learning models for edge devices: A survey[J]. International Journal of Computer Information Systems and Industrial Management Applications, 2025, 17: 18.
|
| [22] |
杨春, 张睿尧, 黄泷, 等. 深度神经网络模型量化方法综述[J]. 工程科学学报, 2023, 45(10): 1613-1629.
|
|
YANG C, ZHANG R Y, HUANG L, et al. A survey of quantization methods for deep neural networks[J]. Chinese Journal of Engineering, 2023, 45(10): 1613-1629 (in Chinese).
|
| [23] |
NAGEL M, FOURNARAKIS M, AMJAD R A, et al. A white paper on neural network quantization[DB/OL]. arXiv preprint: 2106.08295, 2021.
|
| [24] |
ZHAO X Y, HUANG P, SHU X B. Wavelet-attention CNN for image classification[J]. Multimedia Systems, 2022, 28(3): 915-924.
|
| [25] |
FINDER S E, AMOYAL R, TREISTER E, et al. Wavelet convolutions for Large receptive fields[C]∥Computer Vision-ECCV 2024. Cham: Springer, 2025: 363-380.
|
| [26] |
王晓柱, 钮赛赛, 张凯, 等. 基于小波变换与特征提取的红外弱小目标图像融合[J]. 西北工业大学学报, 2020, 38(4): 723-732.
|
|
WANG X Z, NIU S S, ZHANG K, et al. Image fusion of infrared weak-small target based on wavelet transform and feature extraction[J]. Journal of Northwestern Polytechnical University, 2020, 38(4): 723-732 (in Chinese).
|
| [27] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 779-788.
|
| [28] |
REDMON J, FARHADI A. Yolov3: An incremental improvement[DB/OL]. arXiv preprint: 1804.02767, 2018.
|
| [29] |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 7464-7475.
|
| [30] |
FINDER S E, AMOYAL R, TREISTER E, et al. Wavelet convolutions for Large receptive fields[C]∥Computer Vision-ECCV 2024. Cham: Springer, 2025: 363-380.
|
| [31] |
PAN J H, HE C, HUANG W, et al. Wavelet tree transformer: Multihead attention with frequency-selective representation and interaction for remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5637023.
|
| [32] |
GONG R H, LIU X L, JIANG S H, et al. Differentiable soft quantization: Bridging full-precision and low-bit neural networks[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 4851-4860.
|
| [33] |
HUANG L, DONG Z W, CHEN S L, et al. HQOD: Harmonious quantization for object detection[C]∥2024 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE Press, 2024: 1-6.
|