| [1]江波, 屈若锟, 李彦冬, 等.基于深度学习的无人机航拍目标检测研究综述[J].航空学报, 2021, 42(4):524519-524519[2]JIANG B, QU R K, LI Y D, et al.Object detection in UAV imagery based on deep learning: Review[J].ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4):524519-524519[3]欧阳权, 张怡, 马延, 等.基于深度学习的无人机航拍目标检测与跟踪方法综述[J].电光与控制, 2024, 31(3):1-7[4]OUYANG Q, ZHANG Y, MA Y, et al.A Review of UAV Aerial Photography Target Detection and Tracking Methods Based on Deep Learning[J].Electronics Optics & Control, 2024, 31(3):1-7[5]赵禄达, 胡以华, 赵楠翔, 等.点云深度学习模型的压缩和部署加速方法研究现状与展望特邀[J].激光与光电子学进展, 2024, 61(20):2011005-2011005[6]ZHAO L D, HU Y H, ZHAO N X, et al.Review of Model Compression and Accelerated Development for Deep Learning in LiDAR Point Cloud Processing (Invited)[J].Laser & Optoelectronics Progress, 2024, 61(20):2011005-2011005[7]CHEN F H, LI S L, HAN J L, et al.Review of light-weight deep convolutional neural networks[J].Archives of Computational Methods in Engineering, 2024, 31(4):1915-1937[8]王军, 冯孙铖, 程勇.深度学习的轻量化神经网络结构研究综述[J].计算机工程, 2021, 47(8):1-13[9]WANG J, FENG S C, CHENG Y.Survey of Research on Lightweight Neural Network Structures for Deep Learning[J].Computer Engineering, 2021, 47(8):1-13[10]SIFRE L, MALLAT S. Rigid-motion scattering for tex-ture classification[J]. arXiv prep.[J].rXiv:1403.1687, 2014., rint, :-[11]HOWARD A G, ZHU M L, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv prep.[J].rXiv:1704.04861, 2017., rint, :-[12]SANDLER M, HOWARD A, ZHU M L, et al.Mo-bilenetv2: Inverted residuals and linear bottle-necks[C]//Proceedings of the IEEE conference on com-puter vision and pattern recognition. 2018: 4510-4520.[13]ZHANG X Y, ZHOU X Y, LIN M X, et al.Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 6848-6856.[14]HAN K, WANG Y H, TIAN Q, et al.Ghostnet: More features from cheap operations[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 1580-1589.[15]VASU P K A, GABRIEL J, ZHU J, et al.Mobileone: An improved one millisecond mobile back-bone[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 7907-7917.[16]HAN S, MAO H Z, DALLY W J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding[J]. arXiv prep.[J].rXiv:1510.00149, 2015., rint, :-[17]LIU X C, YE M, ZHOU D Y, et al.Post-training quanti-zation with multiple points: Mixed precision without mixed precision[C]//Proceedings of the AAAI confer-ence on artificial intelligence. 2021, 35(10): 8697-8705.[18]NAGEL M, AMJAD R A, VAN BAALEN M, et al.Up or down? adaptive rounding for post-training quantiza-tion[C]//International conference on machine learning. PMLR, 2020: 7197-7206.[19]YUAN Z H, XUE C H, CHEN Y Q, et al.Ptq4vit: Post-training quantization for vision transformers with twin uniform quantization[C]//European conference on com-puter vision. Cham: Springer Nature Switzerland, 2022: 191-207.[20]ESSER S K, MCKINSTRY J L, BABLANI D, et al. Learned step size quantization[J]. arXiv prep.[J].rXiv:1902.08153, 2019., rint, :-[21]BHALGAT Y, LEE J, NAGEL M, et al.Lsq+: Improv-ing low-bit quantization through learnable offsets and better initialization[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020: 696-697.[22]CHOI J, WANG Z, VENKATARAMANI S, et al. Pact: Parameterized clipping activation for quantized neural networks[J]. arXiv prep.[J].rXiv:1805.06085, 2018., rint, :-[23]LIU Z C, CHENG K T, HUANG D, et al.Nonuniform-to-uniform quantization: Towards accurate quantization via generalized straight-through estima-tion[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 4942-4952.[24]ZHU K, HE Y Y, WU J X.Quantized feature distillation for network quantization[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(9): 11452-11460.[25]MUSA A, KAKUDI H A, HASSAN M, et al.Light-weight Deep Learning Models For Edge Devices—A Survey[J].International Journal of Computer Infor-mation Systems and Industrial Management Applications, 2025, 17:18-[26]杨春, 张睿尧, 黄泷, 等.深度神经网络模型量化方法综述[J].工程科学学报, 2023, 45(10):1613-1629[27]YANG C, ZHANG R Y, HUANG L, et al.A survey of quantization methods for deep neural net-works[J].Chinese Journal of Engineering, 2023, 45(10):1613-1629[28]NAGEL M, FOURNARAKIS M, AMJAD R A, et al. A white paper on neural network quantization[J]. arXiv prep.[J].rXiv:2106.08295, 2021., rint, :-[29]REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unified, real-time object detection[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.[30]REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. arXiv prep.[J].rXiv:1804.02767, 2018., rint, :-[31]WANG C Y, BOCHKOVSKIY A, LIAO H Y M.YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF conference on computer vision and pat-tern recognition. 2023: 7464-7475.[32]FINDER S E, AMOYAL R, TREISTER E, et al.Wavelet convolutions for large receptive fields[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 363-380.[33]PAN J H, HE C, HUANG W, et al.Wavelet Tree Trans-former: Multi-Head Attention with Frequency Selective Representation and Interaction for Remote Sensing Object Detection[J].IEEE Transactions on Geoscience and Remote Sensing, 2024, 62:1-23[34]GONG R H, LIU X L, JIANG S H, et al.Differentiable soft quantization: Bridging full-precision and low-bit neural networks[C]//Proceedings of the IEEE/CVF inter-national conference on computer vision. 2019: 4852-4861.[35]HUANG L, DONG Z W, CHEN S L, et al.HQOD: Harmonious Quantization for Object Detection[C]//2024 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2024: 1-6. |