| [1] |
谷学森. 基于单次实验的刚度参数反演识别方法研究[D]. 上海: 上海交通大学, 2017: 17-33.
|
|
GU X S. Research on the inverse identification method of stiffness parameters based on a single test[D]. Shanghai: Shanghai Jiao Tong University, 2017: 17-33 (in Chinese).
|
| [2] |
杨倩, 王彦哲, 杨迪, 等. 基于数据驱动的纤维增强复合材料自动铺放速度预测与规划[J]. 航空学报, 2024, 45(10): 429313.
|
|
YANG Q, WANG Y Z, YANG D, et al. Prediction and planning of automatic laying speed for fiber reinforced composite materials based on data-driven model[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 429313 (in Chinese).
|
| [3] |
束静, 廖文和, 郑侃, 等. 旋转超声加工碳纤维复合材料研究现状与展望[J]. 航空学报, 2024, 45(13): 628939.
|
|
SHU J, LIAO W H, ZHENG K, et al. Review on rotary ultrasonic machining of carbon fiber composites[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 628939 (in Chinese).
|
| [4] |
邹祺, 叶逸云, 焦俊科, 等. 碳纤维增强热固性复合材料-钛合金激光连接接头性能分析[J]. 航空学报, 2022, 43(2): 625037.
|
|
ZOU Q, YE Y Y, JIAO J K, et al. Performance analysis of carbon fiber reinforced thermalsetting composite-titanium alloy laser joint[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 625037 (in Chinese).
|
| [5] |
赵冬梅, 邓建伟, 孙直, 等. 基于边界位移的复合材料力学参数无损反演方法[J]. 计算力学学报, 2022, 39(1): 57-62.
|
|
ZHAO D M, DENG J W, SUN Z, et al. Nondestructive identification of the mechanical properties of layered structures based on surface displacements[J]. Chinese Journal of Computational Mechanics, 2022, 39(1): 57-62 (in Chinese).
|
| [6] |
刘佩, 袁泉, 魏庆朝. 钢筋混凝土柱恢复力模型参数识别的贝叶斯法[J]. 华中科技大学学报(自然科学版), 2013, 41(9): 72-75.
|
|
LIU P, YUAN Q, WEI Q C. Bayesian approach for restoring force model parameter identification of reinforced concrete column[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(9): 72-75 (in Chinese).
|
| [7] |
史继刚. 基于最大似然法的高速旋转弹丸气动参数辨识方法研究[D]. 南京: 南京理工大学, 2017: 12-25.
|
|
SHI J G. Aerodynamic parameter identification method for high-speed rotating projectiles based on maximum likelihood method[D]. Nanjing: Nanjing University of Science and Technology, 2017: 12-25 (in Chinese).
|
| [8] |
李守巨, 刘迎曦, 王登刚, 等. 混凝土重力坝材料参数识别的正则化最小二乘法[J]. 计算物理, 2000, 17(6): 702-706.
|
|
LI S J, LIU Y X, WANG D G, et al. Material para meter identification of the concrete gravitydam with regul arizing least squares method[J]. Chinese Journal of Computation Physics, 2000, 17(6): 702-706 (in Chinese).
|
| [9] |
KOWALCZYK P. Identification of mechanical parameters of composites in tensile tests using mixed numerical-experimental method[J]. Measurement, 2019, 135: 131-137.
|
| [10] |
钱杨情. 碳纤维复合材料特性参数识别及其结构铺层优化[D]. 湘潭: 湘潭大学, 2020: 13-33.
|
|
QIAN Y Q. Characteristic parameters identification and structural lamination optimization about the carbon fiber reinforced composites[D]. Xiangtan: Xiangtan University, 2020: 13-33 (in Chinese).
|
| [11] |
杨万庆, 王艳超, 李能文, 等. 基于桥联模型参数反演的复合材料力学性能预测[J]. 复合材料科学与工程, 2021(2): 84-88.
|
|
YANG W Q, WANG Y C, LI N W, et al. Prediction of composite mechanical properties based on material parameters reversely calculated by the bridging model[J]. Composites Science and Engineering, 2021(2): 84-88 (in Chinese).
|
| [12] |
PAN B, WANG Z, LU Z. Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation[J]. Opt Express, 2010, 18(2): 1011-1023.
|
| [13] |
HUO X T, LUO Q T, LI Q, et al. Measurement of fracture parameters based upon digital image correlation and virtual crack closure techniques[J]. Composites Part B: Engineering, 2021, 224: 109157.
|
| [14] |
JIANG H, ZHU R X, LIU Y, et al. Study on the optimal design of specimens for stiffness coefficients identification of glass fiber-reinforced polymer composites by virtual fields method[J]. Composites Part C: Open Access, 2024, 13: 100425.
|
| [15] |
ZHOU C J, GAO B, YAN B, et al. A combined machine learning/search algorithm-based method for the identification of constitutive parameters from laboratory tests and in-situ tests[J]. Computers and Geotechnics, 2024, 170: 106268.
|
| [16] |
WEI Y, SERRA Q, LUBINEAU G, et al. Coupling physics-informed neural networks and constitutive relation error concept to solve a parameter identification problem[J]. Computers & Structures, 2023, 283: 107054.
|
| [17] |
李文丽. 基于深度学习的复合材料参数识别方法研究[D]. 南京: 南京林业大学, 2023: 8-43.
|
|
LI W L. Parameter identification of composite materials based on deep learning[D]. Nanjing: Nanjing Forestry University, 2023: 8-43 (in Chinese).
|
| [18] |
NGUYEN H Q, LE B A, TRAN B V, et al. Deep artificial neural network-powered phase field model for predicting damage characteristic in brittle composite under varying configurations[J]. Machine Learning: Science and Technology, 2024, 5(2): 025062.
|
| [19] |
刘国青. 复合材料结构有限元模型修正技术研究[D]. 上海: 上海交通大学, 2011: 17-18.
|
|
LIU G Q. Finite element model updating study of composite structures[D]. Shanghai: Shanghai Jiao Tong University, 2011: 17-18 (in Chinese).
|
| [20] |
曲宏亮. 基于数字图像相关技术的陶瓷基复合材料本构参数识别研究[D]. 北京: 北京理工大学, 2017: 10-25.
|
|
QU H L. Research on constitutive parameters identification of ceramic matrix composites based on digital image correlation[D]. Beijing: Beijing Institute of Technology, 2017: 10-25 (in Chinese).
|
| [21] |
ASTM International. Standard test method for tensile properties of polymer matrix composite materials: [S]. West Conshohocken: ASTM International, 2017.
|
| [22] |
ASTM International. Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate: [S]. West Conshohocken: ASTM International, 2007.
|
| [23] |
ASTM International. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading: [S]. West Conshohocken: ASTM International, 2003.
|
| [24] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[DB/OL]. arXiv preprint: 1512.03385, 2015.
|
| [25] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
| [26] |
LIU W J, QIANG J, LI X X, et al. UAV image small object detection based on composite backbone network[J]. Mobile Information Systems, 2022, 2022(1): 7319529.
|
| [27] |
LI X, ZHANG W, DING Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction[J]. Reliability Engineering & System Safety, 2019, 182: 208-218.
|