收稿日期:2025-03-13
修回日期:2025-04-07
接受日期:2025-04-15
出版日期:2025-05-13
发布日期:2025-04-17
通讯作者:
张鑫
E-mail:lookzx@mail.ustc.edu.cn
基金资助:
Yahang SONG, Xin ZHANG(
), Zhiming MA, Zhengyu ZUO
Received:2025-03-13
Revised:2025-04-07
Accepted:2025-04-15
Online:2025-05-13
Published:2025-04-17
Contact:
Xin ZHANG
E-mail:lookzx@mail.ustc.edu.cn
Supported by:摘要:
以减缓起降阶段阵风对飞机影响为目标,以GAW-1翼型为研究对象,采用测力、测压、高速粒子图像测速3种研究手段,开展了基于对称布局介质阻挡放电等离子体激励器的阵风减缓风洞试验研究,定量评估了等离子体阵风减缓效果,揭示了等离子体流动控制机制。试验时将单个对称布局激励器布置在翼型前缘,激励器会诱导产生两股速度近似相等、方向相反的准定常射流。结果表明:在阵风环境下,等离子体激励器能够抑制翼型失速分离,推迟失速迎角;施加激励后,失速迎角推迟了2°,最大升力系数提升了12%;等离子体激励器能够抑制阵风引起的压力振荡,从而减缓阵风影响;对称等离子体激励器诱导产生的展向涡与壁面附近的拟序结构是实现阵风减缓的关键。基于等离子体激励的阵风减缓过程可以分为3个阶段:在第1阶段,一系列诱导涡能够促进壁面附近低能量气流与主流之间的掺混,从而向边界层注入动量;在第2阶段,等离子体诱导涡与来流相互耦合,产生了一个相对封闭的区域,形成了虚拟形变,从而改变了翼型前缘形状;在第3阶段,壁面拟序结构将诱导动量从翼型前缘输运到翼型后缘。研究结果为建立基于等离子体激励的无人机阵风减缓技术提供了方法支撑。
中图分类号:
宋亚航, 张鑫, 马志明, 左峥瑜. 翼型阵风减缓等离子体流动控制低速风洞试验[J]. 航空学报, 2025, 46(22): 131975.
Yahang SONG, Xin ZHANG, Zhiming MA, Zhengyu ZUO. Airfoil gust alleviation using a plasma actuator in low-speed wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(22): 131975.
| [1] | ZHOU Y T, WU Z G, YANG C. Intelligent feedforward gust alleviation based on neural network[J]. Chinese Journal of Aeronautics, 2024, 37(3): 116-132. |
| [2] | IBREN M, SULAEMAN E, ANDAN A D, et al. Gust load alleviation of flexible composite wing[J]. CFD Letters, 2020, 12(4): 79-89. |
| [3] | 张育鸣, 戴玉婷, 黄广靖, 等. 柔性变形后缘翼型阵风减缓及气动噪声分析[J]. 航空学报, 2024, 45(10): 129219. |
| ZHANG Y M, DAI Y T, HUANG G J, et al. Gust alleviation and aeroacoustic characteristics of flexible morphing trailing edge airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129219 (in Chinese). | |
| [4] | CONSIGNY H, GRAVELLE A, MOLINARO R. Aerodynamic characteristics of a two-dimensional moving spoiler in subsonic and transonic flow[J]. Journal of Aircraft, 1984, 21(9): 687-693. |
| [5] | 杨阳, 杨超, 吴志刚. 基于舵机动态特性测试的阵风减缓控制系统设计[J]. 振动与冲击, 2020, 39(4): 106-112, 121. |
| YANG Y, YANG C, WU Z G. A design of gust alleviation control system based on test of actuator’s dynamic characteristics[J]. Journal of Vibration and Shock, 2020, 39(4): 106-112, 121 (in Chinese). | |
| [6] | 杨超, 邱祈生, 周宜涛, 等. 飞机阵风响应减缓技术综述[J]. 航空学报, 2022, 43(10): 527350. |
| YANG C, QIU Q S, ZHOU Y T, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527350 (in Chinese). | |
| [7] | 向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 57-77. |
| XIANG J W, KAN Z, SHAO H Y, et al. A review of key technologies for long-endurance unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 57-77 (in Chinese). | |
| [8] | 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. |
| WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese). | |
| [9] | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
| ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
| [10] | 孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 124080. |
| SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124080 (in Chinese). | |
| [11] | 冯立好, 魏凌云, 董磊, 等. 飞翼布局飞机耦合运动失稳的主动流动控制[J]. 航空学报, 2022, 43(10): 527353. |
| FENG L H, WEI L Y, DONG L, et al. Active flow control for coupled motion instability of flying-wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527353 (in Chinese). | |
| [12] | 陈尹, 顾蕴松, 孙之骏, 等. 基于翼面压力的飞行器气动力感知技术与自由飞验证[J]. 航空学报, 2021, 42(3): 124138. |
| CHEN Y, GU Y S, SUN Z J, et al. Aerodynamic perception from distributed pressure and free flight test[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124138 (in Chinese). | |
| [13] | 王浩, 罗振兵, 邓雄, 等. 基于合成双射流的翼型阵风载荷减缓[J]. 航空学报, 2024, 45(16): 129660. |
| WANG H, LUO Z B, DENG X, et al. Airfoil gust load alleviation based on dual synthetic jets[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 129660 (in Chinese). | |
| [14] | XU X P, ZHU X P, ZHOU Z, et al. Application of active flow control technique for gust load alleviation[J]. Chinese Journal of Aeronautics, 2011, 24(4): 410-416. |
| [15] | MUELLER-VAHL H, NAYERI C, PASCHEREIT C O, et al. Control of unsteady aerodynamic loads using adaptive blowing[C]∥ 32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014. |
| [16] | GAD-EL-HAK M. Modern developments in flow control[J]. Applied Mechanics Reviews, 1996, 49(7): 365-379. |
| [17] | LI Y H, QIN N. Gust load alleviation on an aircraft wing by trailing edge circulation control[J]. Journal of Fluids and Structures, 2021, 107: 103407. |
| [18] | 苏志, 宗豪华, 梁华, 等. 等离子体湍流摩擦减阻研究进展与展望[J]. 空气动力学学报, 2023, 41(9): 1-19. |
| SU Z, ZONG H H, LIANG H, et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction[J]. Acta Aerodynamica Sinica, 2023, 41(9): 1-19 (in Chinese). | |
| [19] | 刘园鹏. 三电极等离子体激励器气动特性研究及其湍流减阻应用[D]. 西安: 西安理工大学, 2023: 10-20. |
| LIU Y P. Investigation of the aerodynamic characteristics of tri-electrode dielectric barrier discharge plasma actuator and its application for turbulent drag reduction[D]. Xi’an: Xi’an University of Technology, 2023: 10-20 (in Chinese). | |
| [20] | 孟宣市, 杨泽人, 陈琦, 等. 低雷诺数下层流分离的等离子体控制[J]. 航空学报, 2016, 37(7): 2112-2122. |
| MENG X S, YANG Z R, CHEN Q, et al. Laminar separation control at low Reynolds numbers using plasma actuation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2112-2122 (in Chinese). | |
| [21] | SATO M, NONOMURA T, OKADA K, et al. Mechanisms for laminar separated-flow control using dielectric-barrier-discharge plasma actuator at low Reynolds number[J]. Physics of Fluids, 2015, 27(11): 117101. |
| [22] | 杜海, 史志伟, 程克明, 等. 纳秒脉冲等离子体分离流控制频率优化及涡运动过程分析[J]. 航空学报, 2016, 37(7): 2102-2111. |
| DU H, SHI Z W, CHENG K M, et al. Frequency optimization and vortex dynamic process analysis of separated flow control by nanosecond pulsed plasma discharge[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2102-2111 (in Chinese). | |
| [23] | 刘汝兵, 韦文韬, 李飞, 等. 补气式等离子体合成射流激励器工作机制[J]. 航空学报, 2022, 43(8): 125854. |
| LIU R B, WEI W T, LI F, et al. Working mechanism of air-supplemented plasma synthetic jet actuator[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125854 (in Chinese). | |
| [24] | ZHANG X, HUANG Y, WANG W B, et al. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed[J]. Science China (Physics, Mechanics & Astronomy), 2014, 57(6): 1160-1168. |
| [25] | 张鑫, 黄勇, 阳鹏宇, 等. 等离子体无人机失速分离控制飞行试验[J]. 航空学报, 2018, 39(2): 121587. |
| ZHANG X, HUANG Y, YANG P Y, et al. Flight test of flow separation control using plasma UAV[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121587 (in Chinese). | |
| [26] | GENG X, SUN Z K, LI Z, et al. Effect of flow structure frequency on flow separation control using dielectric barrier discharge actuator[J]. Physics of Fluids, 2022, 34(9): 091702. |
| [27] | CORKE T C, POST M L, ORLOV D M. SDBD plasma enhanced aerodynamics: Concepts, optimization and applications[J]. Progress in Aerospace Sciences, 2007, 43(7-8): 193-217. |
| [28] | WANG F Y, PENG B F, JIANG N, et al. Plasma characteristics and de-icing of three-electrode double-sided pulsed surface dielectric barrier discharge[J]. Journal of Physics D Applied Physics, 2024, 57(25): 255207. |
| [29] | 党维, 梁华. 基于纳秒脉冲等离子体气动激励的翼型失速涡控制研究[J]. 高压电器, 2017, 53(12): 74-80. |
| DANG W, LIANG H. Research of post-stall vortex control on airfoil based on nanosecond pulse plasma aerodynamic actuation[J]. High Voltage Apparatus, 2017, 53(12): 74-80 (in Chinese). | |
| [30] | 牛中国, 梁华, 蒋甲利. 基于微秒脉冲激励的飞翼模型等离子体流动控制试验研究[J]. 工程力学, 2023, 40(2): 247-256. |
| NIU Z G, LIANG H, JIANG J L. Experimental investigation of plasma flow control on a flying wing model based on microsecond pulsed excitation[J]. Engineering Mechanics, 2023, 40(2): 247-256 (in Chinese). | |
| [31] | ZHANG X, CUI Y D, TAY J C M, et al. Unsteady flow structures induced by single microsecond-pulsed plasma actuator[J]. AIAA Journal, 2020, 58(7): 2820-2830. |
| [32] | YANG P Y, ZHANG X, PAN C. The spatial-temporal evolution process of flow field generated by a pulsed-DC plasma actuator in quiescent air[J]. Aerospace Science and Technology, 2021, 118: 107071. |
| [33] | GAO D L, CHEN G B, CHEN W L, et al. Active control of circular cylinder flow with windward suction and leeward blowing[J]. Experiments in Fluids, 2019, 60(2): 26. |
| [34] | 李玉杰, 罗振兵, 邓雄, 等. 合成双射流控制NACA0015翼型大攻角流动分离试验研究[J]. 航空学报, 2016, 37(3): 817-825. |
| LI Y J, LUO Z B, DENG X, et al. Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 817-825 (in Chiese). | |
| [35] | 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221-234. |
| LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221-234 (in Chinese). | |
| [36] | 顾蕴松, 李斌斌, 程克明. 斜出口合成射流激励器横流输运特性与边界层控制[J]. 航空学报, 2010, 31(2): 231-237. |
| GU Y S, LI B B, CHENG K M. Cross flow transfer characteristics of a new beveled synthetic jet actuator and its applications to boundary layer control[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 231-237 (in Chinese). | |
| [37] | 宗豪华, 吴云, 宋慧敏, 等. 等离子体合成射流的理论模型与重频激励特性[J]. 航空学报, 2015, 36(6): 1762-1774. |
| ZONG H H, WU Y, SONG H M, et al. Analytical model and repetitive working characteristics of plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 1762-1774 (in Chinese). | |
| [38] | Federal Aviation Regulations, Part 25: Airworthiness standards: Transport category airplanes, Section 341: Gust and turbulence loads [S]. Washington, D.C.: Department of Transportation, Federal Aviation Administration, 1996. |
| [39] | European Aviation Safety Agency. Certification specifications for large aeroplanes: CS-25 [S]. Cologne: EASA, 2009. |
| [40] | 于金革, 马占元, 张颖, 等. 多频率组合波形阵风场模拟与测量研究[J]. 工程力学, 2024, 41(3): 250-256. |
| YU J G, MA Z Y, ZHANG Y, et al. Simulation and measurement of multi-frequency combined waveform gust field[J]. Engineering Mechanics, 2024, 41(3): 250-256 (in Chinese). | |
| [41] | 张鑫, 黄勇, 王万波, 等. 对称式布局介质阻挡放电等离子体激励器诱导启动涡[J]. 物理学报, 2016, 65(17): 174701. |
| ZHANG X, HUANG Y, WANG W B, et al. Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator[J]. Acta Physica Sinica, 2016, 65(17): 174701 (in Chinese). | |
| [42] | 白鹏, 崔尔杰, 李锋, 等. 对称翼型低雷诺数小攻角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1): 1-8. |
| BAI P, CUI E J, LI F, et al. Study of the nonlinear lift coefficient of the symmetrical airfoil at low Reynolds number near the 0° angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 1-8 (in Chinese). | |
| [43] | 王海峰, 邓枫, 刘学强, 等. 基于喷流作用的自然层流翼型阵风载荷减缓控制[J]. 航空学报, 2022, 43(11): 526767. |
| WANG H F, DENG F, LIU X Q, et al. Gust load alleviation control based on jets for natural laminar airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526767 (in Chinese). | |
| [44] | 赵炜, 祝小平, 周洲, 等. 时变风场中低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2019, 37(1): 177-185. |
| ZHAO W, ZHU X P, ZHOU Z, et al. Exploring on aerodynamic characteristics of low Reynolds number airfoil in time-varying wind field[J]. Journal of Northwestern Polytechnical University, 2019, 37(1): 177-185 (in Chinese). | |
| [45] | SEIFERT A, GREENBLATT D, WYGNANSKI I J. Active separation control: An overview of Reynolds and Mach numbers effects[J]. Aerospace Science and Technology, 2004, 8(7): 569-582. |
| [46] | 马志明, 张鑫, 宋亚航. 基于等离子体激励的两段翼型阵风减缓控制研究[J]. 力学学报, 2025, 57(1): 55-64. |
| MA Z M, ZHANG X, SONG Y H. Two-element airfoil gust alleviation using a plasma actuator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 55-64 (in Chinese). |
| [1] | 虞翔宇, 李文, 严杰, 梁世哲. 无人机液氢燃料电池热管理系统仿真研究[J]. 航空学报, 2025, 46(9): 630964-630964. |
| [2] | 杨芃芊, 陈禹彤, 刘俊辉, 杨杰豪, 单家元, 孙士珺. 串列翼货运无人机大攻角气动与操稳特性[J]. 航空学报, 2025, 46(9): 131056-131056. |
| [3] | 李荣祖, 刘莉, 杨盾. 基于多源域融合代理模型的氢能无人机优化设计[J]. 航空学报, 2025, 46(9): 630979-630979. |
| [4] | 万开方, 吴志林, 武韫晖, 强皓植, 吴艺博, 李波. 拒止环境下基于深度强化学习的多无人机协同定位[J]. 航空学报, 2025, 46(8): 331024-331024. |
| [5] | 徐惊雷, 黄帅, 潘睿丰, 张玉琪. 气动推力矢量喷管研究近况和发展趋势[J]. 航空学报, 2025, 46(8): 631216-631216. |
| [6] | 姜凌峰, 李新凯, 张海, 李涵玮, 张宏立. 基于改进TD3算法的无人机动态环境无地图导航[J]. 航空学报, 2025, 46(8): 331035-331035. |
| [7] | 朱家健, 罗天罡, 田轶夫, 万明罡, 孙明波. 多通道滑动弧等离子体与燃料喷注协同强化超燃冲压发动机点火方法[J]. 航空学报, 2025, 46(7): 131037-131037. |
| [8] | 向锦武, 马凯, 阚梓, 李道春, 郑可欣, 陈汉轩. 氢能源无人机关键技术研究进展[J]. 航空学报, 2025, 46(5): 531603-531603. |
| [9] | 罗振兵, 王浩, 赵志杰. 合成双射流理论及其赋能航空技术进展[J]. 航空学报, 2025, 46(5): 531821-531821. |
| [10] | 吴云, 张志波, 朱益飞, 贾敏, 李应红. 等离子体燃烧调控研究进展与展望[J]. 航空学报, 2025, 46(5): 531879-531879. |
| [11] | 丁奇帅, 雷帮军, 吴正平. 基于孪生网络的轻量型无人机单目标跟踪算法[J]. 航空学报, 2025, 46(4): 330925-330925. |
| [12] | 吴付杰, 王博文, 齐静雅, 曹铭智, 桑英俊, 李晟, 张玉珍, 陈钱, 左超. 机载多孔径全景图像合成技术研究进展[J]. 航空学报, 2025, 46(3): 630505-630505. |
| [13] | 马诺, 卫社春, 孟军辉, 刘清洋, 雷宇声. 考虑减速伞作用的无人机内埋舱体分离流场特性与动力学[J]. 航空学报, 2025, 46(3): 130755-130755. |
| [14] | 吴一全, 童康. 基于深度学习的无人机航拍图像小目标检测研究进展[J]. 航空学报, 2025, 46(3): 30848-030848. |
| [15] | 胡仕林, 陈柄宙, 康伟. 基于动力学模态分解的柔性膜翼增升机制[J]. 航空学报, 2025, 46(2): 130618-130618. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

