1 |
刘强, 涂国华, 罗振兵, 等. 延迟高超声速边界层转捩技术研究进展[J]. 航空学报, 2022, 43(7): 025357.
|
|
LIU Q, TU G H, LUO Z B, et al. Progress in hypersonic boundary layer transition delay control[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025357 (in Chinese).
|
2 |
李学良, 李创创, 苏伟, 等. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024, 45(2): 128627.
|
|
LI X L, LI C C, SU W, et al. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627 (in Chinese).
|
3 |
BORG M, KIMMEL R, STANFIELD S. HIFiRE-5 attachment-line and crossflow instability in a quiet hypersonic wind tunnel[C]∥ 41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011: 3247.
|
4 |
KOSTAK H E, BOWERSOX R D W. Preflight ground test analyses of the boundary layer transition (BOLT) flight geometry[J]. Journal of Spacecraft and Rockets, 2020, 58(1): 67-77.
|
5 |
袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2): 286-293.
|
|
YUAN X X, HE K, CHEN J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2): 286-293 (in Chinese).
|
6 |
刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023, 44(4): 126664.
|
|
LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126664 (in Chinese).
|
7 |
王晓峰, 屈峰, 付俊杰, 等. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 128352.
|
|
WANG X F, QU F, FU J J, et al. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128352 (in Chinese).
|
8 |
LIU S S, YUAN X X, LIU Z Y, et al. Design and transition characteristics of a standard model for hypersonic boundary layer transition research[J]. Acta Mechanica Sinica, 2021, 37(11): 1637-1647.
|
9 |
CHEN X, DONG S W, TU G H, et al. Boundary layer transition and linear modal instabilities of hypersonic flow over a lifting body[J]. Journal of Fluid Mechanics, 2022, 938: A8.
|
10 |
XIANG X H, CHEN J Q, YUAN X X, et al. Cross-flow transition model predictions of hypersonic transition research vehicle[J]. Aerospace Science and Technology, 2022, 122: 107327.
|
11 |
QI H, LI X L, YU C P, et al. Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV[J]. Advances in Aerodynamics, 2021, 3(1): 31.
|
12 |
陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317.
|
|
CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317 (in Chinese).
|
13 |
LANGTRY R, MENTER F. Transition modeling for general CFD applications in aeronautics[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 522.
|
14 |
WANG L, FU S, CARNARIUS A, et al. A modular RANS approach for modelling laminar-turbulent transition in turbomachinery flows[J]. International Journal of Heat and Fluid Flow, 2012, 34: 62-69.
|
15 |
WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1): 165-187.
|
16 |
朱志斌, 尚庆, 沈清. 高超声速边界层转捩模型横流效应修正与应用[J]. 航空学报, 2022, 43(7): 125685.
|
|
ZHU Z B, SHANG Q, SHEN Q. Crossflow modification of transition model for hypersonic boundary layer and its application[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125685 (in Chinese).
|
17 |
向星皓, 张毅锋, 袁先旭, 等. C⁃γ⁃Reθ 高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 625711.
|
|
XIANG X H, ZHANG Y F, YUAN X X, et al. C⁃γ⁃Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625711 (in Chinese).
|
18 |
刘清扬, 雷娟棉, 刘周, 等. 适用于可压缩流动的γ⁃Ret⁃fRe 转捩模型[J]. 航空学报, 2022, 43(8): 327-337.
|
|
LIU Q Y, LEI J M, LIU Z, et al. γ⁃Ret⁃fRe transition model for compressible flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 327-337 (in Chinese).
|
19 |
ZHOU L, ZHAO R, YUAN W. Application of improved k⁃ω⁃γ transition model to hypersonic complex configurations[J]. AIAA Journal, 2019, 57(5): 2214-2221.
|
20 |
ZHOU L, LI R F, HAO Z H, et al. Improved k⁃ω⁃γ model for crossflow-induced transition prediction in hypersonic flow[J]. International Journal of Heat and Mass Transfer, 2017, 115: 115-130.
|
21 |
ZHOU L, YAN C, HAO Z H, et al. Improved k⁃ω⁃γ model for hypersonic boundary layer transition prediction[J]. International Journal of Heat and Mass Transfer, 2016, 94: 380-389.
|
22 |
周玲, 阎超, 孔维萱. 高超声速飞行器前体边界层强制转捩数值模拟[J]. 航空学报, 2014, 35(6): 1487-1495.
|
|
ZHOU L, YAN C, KONG W X. Numerical simulation of forced boundary layer transition on hypersonic vehicle forebody[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1487-1495 (in Chinese).
|
23 |
周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4): 1092-1102.
|
|
ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1092-1102 (in Chinese).
|
24 |
周玲. 高超声速k⁃ω⁃γ转捩模式的改进及应用[D]. 北京:北京航空航天大学, 2016.
|
|
ZHOU L. Improvements and applications of hypersonic k⁃ω⁃γ transition model[D]. Beijing: Beihang University, 2016 (in Chinese).
|
25 |
王亮, 周玲. 基于改进的k⁃ω⁃γ转捩模式预测高超声 速飞行器气动特性[J]. 空气动力学学报, 2021, 39(3): 51-61.
|
|
WANG L, ZHOU L. Prediction of aerodynamic characteristics of hypersonic vehicle by improved k⁃ω⁃γ transition model[J]. Acta Aerodynamica Sinica, 2021, 39(3): 51-61 (in Chinese).
|
26 |
ZHAO Y T, YAN C, LIU H K, et al. Assessment of laminar-turbulent transition models for Hypersonic Inflatable Aerodynamic Decelerator aeroshell in convection heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 132: 825-836.
|
27 |
陈久芬,徐洋,蒋万秋,等. 升力体外形高超声速边界层转捩红外测量实验[J]. 实验流体力学, doi: 10.11729/syltlx20220030 .
|
|
CHEN J F, XU Y, JIANG W Q,et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220030 (in Chinese).
|