1 |
LU F K, MARREN D E. Advanced hypersonic test facilities[M]∥ZARCHAN P. Progress in Astronautics and Aeronautics. Reston: AIAA, 2002: 1-15.
|
2 |
JIANG Z L, CHUE S M. Theories and technologies of hypervelocity shock tunnels[M]. Cambridge: Cambridge University Press, 2023: 1-10.
|
3 |
姜宗林. 中国高超风洞的理论创新与工程实践[J]. 工程研究-跨学科视野中的工程, 2022, 14(6): 469-482.
|
|
JIANG Z L. Theoretical innovation and engineering practice of Chinese hypervelocity wind tunnels[J]. Journal of Engineering Studies, 2022, 14(6): 469-482 (in Chinese).
|
4 |
KUO Y H. Dissociation effects in hypersonic viscous flows[J]. Journal of the Aeronautical Sciences, 1957, 24(5): 345-350.
|
5 |
ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. New York: McGraw-Hill Book Company, 1989: 449-461.
|
6 |
郭永怀. 现代空气动力学的问题[M]∥郭永怀文集. 北京: 科学出版社, 2009: 289-295.
|
|
GUO Y H. Problems of modern aerodynamics[M]∥Guo Yonghuai’s Collected Works. Beijing: Science Press, 2009: 289-295 (in Chinese).
|
7 |
BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: Where we’ve been, where we’re going[J]. Progress in Aerospace Sciences, 2003, 39(6): 511-536.
|
8 |
BERTIN J J, CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38(1): 129-157.
|
9 |
JIANG Z L, YU H R. Theories and technologies for duplicating hypersonic flight conditions for ground testing[J]. National Science Review, 2017, 4(3): 290-296.
|
10 |
JIANG Z L, LI J P, HU Z M, et al. On theory and methods for advanced detonation-driven hypervelocity shock tunnels[J]. National Science Review, 2020, 7(7): 1198-1207.
|
11 |
BRAUCKMANN G J, PAULSON J, WEILMUENSTER K J. Experimental and computational analysis of Shuttle Orbiter hypersonic trim anomaly[J]. Journal of Spacecraft and Rockets, 1995, 32(5): 758-764.
|
12 |
PEEBLES C. Road to Mach 10: Lessons learned from the X-43A flight research program[M]. Reston: AIAA, 2008: 1-24.
|
13 |
DUFRENE A T, MACLEAN M, WADHAMS T, et al. Extension of LENS shock tunnel test times and lower Mach number capability: AIAA-2015-2017[R]. Reston: AIAA, 2015.
|
14 |
姜宗林, 俞鸿儒, 高超声速激波风洞研究进展 [J], 力学进展, 2009, 39(6): 766-776.
|
|
JIANG Z L, YU H R. Progress in hypersonic shock wind tunnel[J]. Advances in Mechanics, 2009, 39(6): 766-776 (in Chinese).
|
15 |
姜宗林, 李进平, 胡宗民, 等. 高超声速飞行复现风洞理论与方法[J]. 力学学报, 2018, 50(6): 1283-1291.
|
|
JIANG Z L, LI J P, HU Z M, et al. Shock tunnel theory and methods for duplicating hypersonic flight conditions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1283-1291 (in Chinese).
|
16 |
姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(3): 347-355.
|
|
JIANG Z L. Research progress of hypersonic high-enthalpy wind tunnel test technology[J]. Acta Aerodynamica Sinica, 2019, 37(3): 347-355 (in Chinese).
|
17 |
STALKER R J. A study of the free-piston shock tunnel[J]. AIAA Journal, 1967, 5(12): 2160-2165.
|
18 |
ITOH K, UEDA S, KOMURO T, et al. Improvement of a free piston driver for a high-enthalpy shock tunnel[J]. Shock Waves, 1998, 8(4): 215-233.
|
19 |
HOLDEN M. Recent advances in hypersonic test facilities and experimental research[C]∥Proceedings of the 5th International Aerospace Planes and Hypersonics Technologies Conference. Reston: AIAA, 1993.
|
20 |
BIRD GA. A note on combustion driven shock tubes: AGARD Rep. 146[R]. Paris: AGARD, 1957.
|
21 |
YU H R. Recent developments in shock tune application[C]∥Proceedings of the 1989 National Symposium on Shock Wave Phenomena, 1989.
|
22 |
俞鸿儒, 李斌, 陈宏. 激波管氢氧爆轰驱动技术的发展进程[J]. 力学进展, 2005, 35(3): 315-322.
|
|
YU H R, LI B, CHEN H. The development of gaseous detonation driving techniques for a shock tube[J]. Advances in Mechanics, 2005, 35(3): 315-322 (in Chinese).
|
23 |
YU H R, ESSER B, LENARTZ M, et al. Gaseous detonation driver for a shock tunnel[J]. Shock Waves, 1992, 2(4): 245-254.
|
24 |
CHUE S M, TSAI C Y, BAKOS R J, et al. NASA’s HYPULSE facility at GASL - A dual mode, dual driver reflected-shock/expansion tunnel[M]∥Advanced Hypersonic Test Facilities. Reston: AIAA, 2002: 29-71.
|
25 |
BAKOS R, CALLEJA J, ERDOS J, et al. An experimental and computational study leading to new test capabilities for the HYPULSE facility with a detonation driver[C]∥Proceedings of the Advanced Measurement and Ground Testing Conference. Reston: AIAA, 1996.
|
26 |
李进平, 冯珩, 姜宗林, 等. 爆轰驱动激波管缝合激波马赫数计算[J]. 空气动力学学报, 2008, 26(3): 291-296.
|
|
LI J P, FENG H, JIANG Z L, et al. Numerical computation on the tailored shock Mach numbers for a hydrogen-oxygen detonation shock tube[J]. Acta Aerodynamica Sinica, 2008, 26(3): 291-296 (in Chinese).
|
27 |
姜宗林, 李进平, 赵伟, 等. 长试验时间爆轰驱动激波风洞技术研究[J]. 力学学报, 2012, 44(5): 824-831.
|
|
JIANG Z L, LI J P, ZHAO W, et al. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 824-831 (in Chinese).
|
28 |
TAYLOR G I. The dynamics of the combustion products behind plane and spherical detonation fronts in explosives[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1950, 200(1061): 235-247.
|
29 |
NETTLETON M A. Gaseous detonation: Their nature, effects and control[J]. Journal of Loss Prevention in the Process Industries, 1988, 1(2): 116-7.
|
30 |
ZEL’DOVICH Y B. Distribution of pressure and velocity in detonation products[J]. Journal of Experiments and Theoretical Physics, 1942, 12: 389.
|
31 |
COATES P B, GAYDON A G. A simple shock tube with detonating driver gas[J]. Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences, 1965, 283(1392): 18-32.
|
32 |
陈宏, 冯珩, 俞鸿儒. 用于激波管/风洞的双爆轰驱动段[J]. 中国科学G辑, 2004, 34(2): 183-191.
|
|
CHEN H, FENG H, YU H R. Double detonation driving section for shock tube/wind tunnel[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2004, 34(2): 183-191 (in Chinese).
|
33 |
JIANG Z L, ZHAO W, WANG C, et al. Forward-running detonation drivers for high-enthalpy shock tunnels[J]. AIAA Journal, 2002, 40: 2009-2016.
|
34 |
JIANG Z L, WU B, GAO Y L, et al. Development of the detonation-driven expansion tube for orbital speed experiments[J]. Science China Technological Sciences, 2015, 58(4): 695-700.
|
35 |
高云亮, 赵伟, 姜宗林. 爆轰驱动高焓激波膨胀管性能研究[J]. 力学学报, 2008, 40(4): 473-478.
|
|
GAO Y L, ZHAO W, JIANG Z L. Experimental study on the performance of the detonation-driven high-enthalpy shock expansion tube[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 473-478 (in Chinese).
|
36 |
周凯, 苑朝凯, 胡宗民, 等. JF-16膨胀管流场分析及升级改造[J]. 航空学报, 2016, 37(11): 3296-3303.
|
|
ZHOU K, YUAN C K, HU Z M, et al. Flow field analysis of JF-16 expansion tube and its upgrade[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3296-3303 (in Chinese).
|
37 |
周凯, 汪球, 胡宗民, 等. 爆轰驱动膨胀管性能研究[J]. 航空学报, 2016, 37(3): 810-816.
|
|
ZHOU K, WANG Q, HU Z M, et al. Performance study of a detonation-driven expansion tube[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 810-816 (in Chinese).
|
38 |
JIANG Z L, HU Z M, WANG Y P, et al. Advances in critical technologies for hypersonic and high-enthalpy wind tunnel[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3027-3038.
|
39 |
WANG Y P, JIANG Z L. Impulse force-measurement system[J]. Shock Waves, 2020, 30(6): 603-613.
|
40 |
NIE S J, WANG Y P, JIANG Z L. Force measurement using strain-gauge balance in shock tunnel based on deep learning[J]. Chinese Journal of Aeronautics, 2023, 36(8): 43-53.
|
41 |
MENG B Q, HAN G L, LUO C T, et al. Numerical investigation of the axial impulse load during the startup in the shock tunnel[J]. Aerospace Science and Technology, 2018, 73: 332-342.
|
42 |
MENG B Q, HAN G L, ZHANG D L, et al. Aerodynamic measurement of a large aircraft model in hypersonic flow[J]. Chinese Physics B, 2017, 26(11): 114702.
|
43 |
HAN G L, QI L, JIANG Z L. Analytic investigation on error of heat flux measurement and data processing for large curvature models in hypersonic shock tunnels[J]. Applied Mathematics Letters, 2022, 134: 108342.
|
44 |
QI L, HAN G L, JIANG Z L. Optimal design of E-type coaxial thermocouples for transient heat measurements in shock tunnels[J]. Applied Thermal Engineering, 2023, 218: 119388.
|
45 |
QI L, HAN G L, HU Z M, et al. Numerical investigations of the lateral heat transfer in coaxial thermocouples[J]. Numerical Heat Transfer Part A-Applications, 2022, 82(6): 280-298.
|