收稿日期:
2023-04-21
修回日期:
2023-05-15
接受日期:
2023-06-19
出版日期:
2024-03-25
发布日期:
2023-06-27
通讯作者:
王晓乐
E-mail:lelemyworld@sjtu.edu.cn
基金资助:
Xiaole WANG1(), Ping SUN1, Xin GU2, Chunyu ZHAO1, Zhenyu HUANG1
Received:
2023-04-21
Revised:
2023-05-15
Accepted:
2023-06-19
Online:
2024-03-25
Published:
2023-06-27
Contact:
Xiaole WANG
E-mail:lelemyworld@sjtu.edu.cn
Supported by:
摘要:
针对直升机舱内500 Hz以下的低频噪声控制难题,在原有直升机舱壁结构基础上引入声学超材料设计范式,提出一类低频多带隙声学超材料结构。该声学超材料结构单元内部包含4个悬臂梁式共振结构,在各个共振结构的谐振频率处能够打开局域共振完整带隙。首先,建立声学超材料结构单元的有限元动力学模型,算例分析其能带结构特性并揭示多带隙形成机理。其次,开展声学超材料样件安装于小尺寸均匀平直板前后的法向入射传声损失试验与锤击激励振声试验,发现实测的隔声提高区和传递函数幅值衰减区均符合理论预测的带隙频率范围,从而验证了理论模型的正确性。最后,在混响室-全消声室测试环境中开展声学超材料样件附加于大尺寸曲面加筋壁板前后的扩散场入射传声损失试验与激振器激励振声试验,证明即便应用于复杂结构壁板,声学超材料的带隙频段仍然显示出很高的潜力来改善隔声性能和振声行为。研究工作旨在为采用轻薄声学超材料降低直升机舱内噪声提供思路和方法。
中图分类号:
王晓乐, 孙萍, 顾鑫, 赵春宇, 黄震宇. 直升机声学超材料舱壁的低频多带隙降噪特性[J]. 航空学报, 2024, 45(6): 428901-428901.
Xiaole WANG, Ping SUN, Xin GU, Chunyu ZHAO, Zhenyu HUANG. Low⁃frequency and multi⁃bandgap noise reduction characteristics of acoustic metamaterial⁃based helicopter sidewall[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 428901-428901.
1 | 倪先平, 朱清华. 直升机总体设计思路和方法发展分析[J]. 航空学报, 2016, 37(1): 17-29. |
NI X P, ZHU Q H. Development of ideas and methods of helicopter general design[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 17-29 (in Chinese). | |
2 | 史勇杰, 徐国华, 招启军. 直升机气动声学[M]. 北京: 科学出版社, 2019: 133-168. |
SHI Y J, XU G H, ZHAO Q J. Helicopter aeroacoustics[M]. Beijing: Science Press, 2019: 133-168 (in Chinese). | |
3 | 刘孝辉, 徐新喜, 白松, 等. 军用直升机振动与噪声控制技术[J]. 直升机技术, 2013(1): 67-72. |
LIU X H, XU X X, BAI S, et al. Vibration and noise control technology on military helicopters[J]. Helicopter Technique, 2013(1): 67-72 (in Chinese). | |
4 | 吴希明, 牟晓伟. 直升机关键技术及未来发展与设想[J]. 空气动力学学报, 2021, 39(3): 1-10. |
WU X M, MU X W. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica, 2021, 39(3): 1-10 (in Chinese). | |
5 | BRENNAN M J, ELLIOTT S J, HERON K H. Noise propagation through helicopter gearbox support struts—An experimental study[J]. Journal of Vibration and Acoustics, 1998, 120(3): 695-704. |
6 | 王风娇, 李明强, 彭海锋, 等. 直升机舱内主减速器噪声控制技术研究综述[J]. 南京航空航天大学学报, 2022, 54(2): 179-190. |
WANG F J, LI M Q, PENG H F, et al. Overview of control technology for helicopter cabin noise from main gearbox[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(2): 179-190 (in Chinese). | |
7 | 王风娇, 陆洋. 用于直升机舱内降噪的主减周期撑杆研究[J]. 航空学报, 2016, 37(11): 3370-3384. |
WANG F J, LU Y. Research on gearbox periodic strut for helicopter cabin noise reduction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3370-3384 (in Chinese). | |
8 | 徐国华, 史勇杰, 招启军, 等. 直升机旋翼气动噪声的研究新进展[J]. 航空学报, 2017, 38(7): 520991. |
XU G H, SHI Y J, ZHAO Q J, et al. New research progress in helicopter rotor aerodynamic noise[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520991 (in Chinese). | |
9 | 宋玉宝, 李征初, 黄奔, 等. 周期隔振设计用于直升机舱内噪声抑制的研究[J]. 振动工程学报, 2020, 33(4): 764-771. |
SONG Y B, LI Z C, HUANG B, et al. Reduction of helicopter cabin noise using periodic isolation design[J]. Journal of Vibration Engineering, 2020, 33(4): 764-771 (in Chinese). | |
10 | 查建平, 王风娇, 郭俊贤, 等. 直升机主减速器噪声源控制技术概述[J]. 航空学报, 2022, 43(6): 526123. |
ZHA J P, WANG F J, GUO J X, et al. An overview of noise source control technology for helicopter main gearbox[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526123 (in Chinese). | |
11 | CHEN Y, GHINET S, PRICE A, et al. Investigation of aircrew noise exposure levels and hearing protection solutions in helicopter cabin[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(8): 1050-1058. |
12 | 宋玉宝, 温激鸿, 郁殿龙, 等. 板结构振动与噪声抑制研究综述[J]. 机械工程学报, 2018, 54(15): 60-77. |
SONG Y B, WEN J H, YU D L, et al. Review of vibration and noise control of the plate structures[J]. Journal of Mechanical Engineering, 2018, 54(15): 60-77 (in Chinese). | |
13 | 李文智, 曹瑶琴, 何志平. 基于材料及结构的直升机噪声抑制技术研究进展[J]. 航空材料学报, 2022, 42(2): 1-10. |
LI W Z, CAO Y Q, HE Z P. Research progress of helicopter noise suppression technology based on materials/structures[J]. Journal of Aeronautical Materials, 2022, 42(2): 1-10 (in Chinese). | |
14 | GAO P X, YU T, ZHANG Y L, et al. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 83-114. |
15 | MA X J, LU Y, WANG F J. Active structural acoustic control of helicopter interior multifrequency noise using input-output-based hybrid control[J]. Journal of Sound and Vibration, 2017, 405: 187-207. |
16 | MISOL M. Active sidewall panels with virtual microphones for aircraft interior noise reduction[J]. Applied Sciences, 2020, 10(19): 6828. |
17 | MISOL M. Full-scale experiments on the reduction of propeller-induced aircraft interior noise with active trim panels[J]. Applied Acoustics, 2020, 159: 107086. |
18 | KISHORE S E, SUJITHRA R, DHATREYI B. A review on latest acoustic noise mitigation materials[J]. Materials Today: Proceedings, 2021, 47: 4700-4707. |
19 | GAO N S, ZHANG Z C, DENG J E, et al. Acoustic metamaterials for noise reduction: A review[J]. Advanced Materials Technologies, 2022, 7(6): 2100698. |
20 | LU Q B, LI X, ZHANG X J, et al. Perspective: Acoustic metamaterials in future engineering[J]. Engineering, 2022, 17: 22-30. |
21 | 尹剑飞, 蔡力, 方鑫, 等. 力学超材料研究进展与减振降噪应用[J]. 力学进展, 2022, 52(3): 508-586. |
YIN J F, CAI L, FANG X, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control[J]. Advances in Mechanics, 2022, 52(3): 508-586 (in Chinese). | |
22 | 李澔翔, 梁彬, 程建春. 声人工结构的声场调控研究进展[J]. 中国科学: 物理学 力学 天文学, 2022, 52(4): 6-33. |
LI H X, LIANG B, CHENG J C. Recent advances in the artificial structure-based manipulation of the acoustic field[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2022, 52(4): 6-33 (in Chinese). | |
23 | 温激鸿, 郁殿龙, 赵宏刚. 人工周期结构中弹性波的传播: 振动与声学特性[M]. 北京: 科学出版社, 2015: 1-20. |
WEN J H, YU D L, ZHAO H G. Propagation of elastic waves in artificial periodic structures: Vibration and acoustic characteristics[M]. Beijing: Science Press, 2015: 1-20 (in Chinese). | |
24 | XIAO Y, WEN J H, WEN X S. Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators[J]. Journal of Sound and Vibration, 2012, 331(25): 5408-5423. |
25 | SONG Y B, FENG L P, WEN J H, et al. Reduction of the sound transmission of a periodic sandwich plate using the stop band concept[J]. Composite Structures, 2015, 128: 428-436. |
26 | DROZ C, ROBIN O, ICHCHOU M, et al. Improving sound transmission loss at ring frequency of a curved panel using tunable 3D-printed small-scale resonators[J]. The Journal of the Acoustical Society of America, 2019, 145(1): EL72. |
27 | WANG X L, LUO X D, HUANG Z Y. Hybrid metamaterials enable multifunctional manipulation of mechanical waves on solid-fluid interfaces[J]. Applied Physics Letters, 2020, 117(6): 061902. |
28 | SONG Y B, WEN J H, TIAN H, et al. Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study[J]. Journal of Sound and Vibration, 2020, 489: 115644. |
29 | TUFANO G, ERRICO F, ROBIN O, et al. K-space analysis of complex large-scale meta-structures using the inhomogeneous wave correlation method[J]. Mechanical Systems and Signal Processing, 2020, 135: 106407. |
30 | PIRES F A, CLAEYS C, DECKERS E, et al. The impact of resonant additions’ footprint on the stop band behavior of 1D locally resonant metamaterial realizations[J]. Journal of Sound and Vibration, 2021, 491: 115705. |
31 | PIRES F A, SANGIULIANO L, DENAYER H, et al. The use of locally resonant metamaterials to reduce flow-induced noise and vibration[J]. Journal of Sound and Vibration, 2022, 535: 117106. |
32 | SANGIULIANO L, REFF B, PALANDRI J, et al. Low frequency tyre noise mitigation in a vehicle using metal 3D printed resonant metamaterials[J]. Mechanical Systems and Signal Processing, 2022, 179: 109335. |
33 | ZHANG H, WEN J H, XIAO Y, et al. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches[J]. Journal of Sound and Vibration, 2015, 343: 104-120. |
34 | FANG X, WEN J H, BONELLO B, et al. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials[J]. Nature Communications, 2017, 8: 1288. |
35 | WANG T, SHENG M P, DING X D, et al. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment[J]. Journal of Physics D: Applied Physics, 2018, 51(11): 115306. |
36 | MA J G, SHENG M P, GUO Z W, et al. Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators[J]. Journal of Sound and Vibration, 2018, 424: 94-111. |
37 | ZHAO G, XU M, WANG X, et al. Low-frequency vibroacoustic performance of an acoustic metamaterial plate with periodical single-stage multi-degree-of-freedom resonators attachment[J]. Physics Letters A, 2021, 412: 127593. |
38 | FANG X, SHENG P, WEN J H, et al. A nonlinear metamaterial plate for suppressing vibration and sound radiation[J]. International Journal of Mechanical Sciences, 2022, 228: 107473. |
39 | GIANNINI D, SCHEVENELS M, REYNDERS E P B. Rotational and multimodal local resonators for broadband sound insulation of orthotropic metamaterial plates[J]. Journal of Sound and Vibration, 2023, 547: 117453. |
40 | SHENG P, FANG X, DAI L, et al. Synthetical vibration reduction of the nonlinear acoustic metamaterial honeycomb sandwich plate[J]. Mechanical Systems and Signal Processing, 2023, 185: 109774. |
41 | CLAEYS C C, VERGOTE K, SAS P, et al. On the potential of tuned resonators to obtain low-frequency vibrational stop bands in periodic panels[J]. Journal of Sound and Vibration, 2013, 332(6): 1418-1436. |
42 | WANG G, WEN X S, WEN J H, et al. Two-dimensional locally resonant phononic crystals with binary structures[J]. Physical Review Letters, 2004, 93(15): 154302. |
43 | 朱席席, 肖勇, 温激鸿, 等. 局域共振型加筋板的弯曲波带隙与减振特性[J]. 物理学报, 2016, 65(17): 316-330. |
ZHU X X, XIAO Y, WEN J H, et al. Flexural wave band gaps and vibration reduction properties of a locally resonant stiffened plate[J]. Acta Physica Sinica, 2016, 65(17): 316-330 (in Chinese). | |
44 | BORN M. Wave propagation in periodic structures[J]. Nature, 1946, 158(4026): 926. |
45 | LANGLEY R S. A note on the force boundary conditions for two-dimensional periodic structures with corner freedoms[J]. Journal of Sound and Vibration, 1993, 167(2): 377-381. |
46 | GOFFAUX C, SÁNCHEZ-DEHESA J, YEYATI A L, et al. Evidence of fano-like interference phenomena in locally resonant materials[J]. Physical Review Letters, 2002, 88(22): 225502. |
47 | American Society for Testing and Materials. Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method: [S]. West Conshohocken, PA: ASTM International, 2019: 1-14. |
48 | SONG B H, BOLTON J S. A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials[J]. The Journal of the Acoustical Society of America, 2000, 107(3): 1131-1152. |
49 | VAN BELLE L, CLAEYS C, DECKERS E, et al. The impact of damping on the sound transmission loss of locally resonant metamaterial plates[J]. Journal of Sound and Vibration, 2019, 461: 114909. |
50 | LIU B L, FENG L P, NILSSON A. Sound transmission through curved aircraft panels with stringer and ring frame attachments[J]. Journal of Sound and Vibration, 2007, 300(3-5): 949-973. |
51 | ZHOU J, BHASKAR A, ZHANG X. The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material[J]. Journal of Sound and Vibration, 2014, 333(7): 1972-1990. |
52 | LIU Y, SEBASTIAN A. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel[J]. Journal of Sound and Vibration, 2015, 344: 399-415. |
[1] | 马锦超, 陆洋, 王亮权, 宋奎辉. 基于高阶谐波控制的倾转旋翼近场气动噪声主动控制试验[J]. 航空学报, 2024, 45(9): 528602-528602. |
[2] | 郑峰婴, 沈志敏, 李雅琴, 徐楷钊, 王新华. 共轴高速直升机增益自适应多模式切换控制[J]. 航空学报, 2024, 45(9): 529088-529088. |
[3] | 崔壮壮, 原昕, 赵国庆, 井思梦, 招启军. 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024, 45(9): 529256-529256. |
[4] | 孙大智, 陈希, 鲍为成, 卞威, 招启军. 高速直升机机身干扰对推力桨气动与噪声源特性的影响[J]. 航空学报, 2024, 45(9): 529142-529142. |
[5] | 刘昌昊, 曹义华, 梅晓萌, 汪茂胜, 张广林. 高速直升机运输效能评估[J]. 航空学报, 2024, 45(9): 530182-530182. |
[6] | 仇钰清, 李俨, 郎金溪, 刘育衔, 王重. 高速直升机过渡模态鲁棒自适应姿态控制[J]. 航空学报, 2024, 45(9): 529927-529927. |
[7] | 曾怡兰, 韩东, 刘壮壮, 周鑫. 高速飞行复合式直升机旋翼受上洗时的驱转特性[J]. 航空学报, 2024, 45(9): 529061-529061. |
[8] | 韩少强, 宋文萍, 韩忠华, 许建华. 高速共轴刚性旋翼非定常流动高精度数值模拟[J]. 航空学报, 2024, 45(9): 529064-529064. |
[9] | 王梓旭, 李攀, 鲁可, 朱振华, 陈仁良. 共轴刚性旋翼高速直升机配平策略优化设计[J]. 航空学报, 2024, 45(9): 529069-529069. |
[10] | 邓景辉. 高速直升机关键技术与发展[J]. 航空学报, 2024, 45(9): 529085-529085. |
[11] | 聂博文, 王亮权, 黄志银, 何龙, 杨仕鹏, 颜鸿涛, 章贵川. 复合式高速无人直升机飞行动力学建模与控制策略设计[J]. 航空学报, 2024, 45(9): 529848-529848. |
[12] | 王雪鹤, 柴春硕, 邢世龙, 樊枫, 黄水林. 共轴高速直升机反流区翼型设计及减阻机理[J]. 航空学报, 2024, 45(9): 529960-529960. |
[13] | 李博, 王潇. 共轴双旋翼/尾推桨/传动耦合系统动力学建模与固有特性分析[J]. 航空学报, 2024, 45(9): 528945-528945. |
[14] | 刘琦, 史勇杰, 胡志远, 徐国华. 共轴刚性旋翼气动及噪声特性的参数影响分析[J]. 航空学报, 2024, 45(9): 528856-528856. |
[15] | 张东飞, 高军辉. GPU加速高阶谱差分方法在风扇噪声中的应用[J]. 航空学报, 2024, 45(8): 128941-128941. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学