收稿日期:
2023-01-03
修回日期:
2023-01-28
接受日期:
2023-05-25
出版日期:
2023-12-15
发布日期:
2023-06-02
通讯作者:
薛文超
E-mail:wenchaoxue@amss.ac.cn
基金资助:
Linkun HE1, Wenchao XUE2,3(), Ran ZHANG1, Huifeng LI1
Received:
2023-01-03
Revised:
2023-01-28
Accepted:
2023-05-25
Online:
2023-12-15
Published:
2023-06-02
Contact:
Wenchao XUE
E-mail:wenchaoxue@amss.ac.cn
Supported by:
摘要:
可重复使用运载火箭能够大幅降低进入空间的成本,是下一代航天运输系统的重要组成部分,而动力着陆段是实现可重复使用运载火箭回收的关键。对现有运载火箭动力着陆段的制导控制方法进行了综述,在对现有方法进行分析的基础上提出了一种模块化协作设计,并对人工智能方法在制导控制中的应用进行了展望。首先建立了运载火箭动力着陆段制导控制的整体模型,归纳了常用指标及约束集合,并分析了制导控制设计需解决的问题。然后,对现有的主要制导控制方法,即解析制导方法、轨迹优化制导方法、基于机器学习的制导方法、姿态控制方法及制导控制协作方法等进行了综述,通过分析所考虑的运动方程模型、约束及性能指标等对主要方法进行了较全面的比较,并进一步针对不确定模型及干扰下的制导控制综合目标优化问题提出了一种模块化智能协作方法。最后,对动力着陆段制导控制方法的发展趋势进行了总结,并对人工智能方法与动力着陆段制导控制方法的结合进行了展望。
中图分类号:
何林坤, 薛文超, 张冉, 李惠峰. 运载火箭动力着陆段制导控制方法综述与展望[J]. 航空学报, 2023, 44(23): 628462-628462.
Linkun HE, Wenchao XUE, Ran ZHANG, Huifeng LI. Guidance and control for powered descent and landing of launch vehicles: Overview and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628462-628462.
表 2
动力着陆段制导控制方法
制导控制方法 | 运动方程特性 | 约束特性 | 性能指标 | 优缺点 | 应用场景 | |
---|---|---|---|---|---|---|
方法 解析制导 | 多项式制导 | 常值重力; 无气动力;质量恒定 | 终端位置、速度、 姿态约束 | 无性能指标 | 模型简单 模型简化严重 | 气动力作用不明显的行星动力着陆 |
重力转弯制导 | 假设动力着陆段轨迹位于纵向平面 | 纵向平面内的终端速度和姿态约束 | 易于控制系统实现 难以处理大范围 横纵向终端位置误差 | |||
近似最优解析制导 | 可使用一般形式 重力场模型 | 终端位置、 速度约束 | 加速度二次型积分 | 采用误差反馈形式,鲁棒性好;难以处理终端姿态约束 | ||
轨迹优化制导方法 | 间接法 | 考虑质量变化; 一般不考虑气动力 | 推力大小过程约束 | 燃料消耗 指标 | 最优性好 难以在线应用 | 一般 动力着陆 |
凸优化 | 考虑质量变化; 考虑气动力作用; 飞行时间不确定 | 一般线性、 非线性约束 | 一般线性、非线性指标 | 可处理一般约束及 指标;收敛性缺少严格理论证明 | ||
基于机器学习的制导方法 | 考虑初始状态及 模型参数散布 | 一般线性、 非线性约束 | 一般线性、非线性指标 | 适应性好;样本量大、奖励函数设计难、可解释性差、控制量安全性难以保证 | 一般 动力着陆 | |
方法 姿态控制 | 比例-微分-积分控制 | 仅考虑绕质心运动 | 可用摆角约束 | 无性能指标 | 模型简单;结构固定,难以精细化设计 | 一般 动力着陆 |
相平面控制 | 模型简单;仅能进行 开关控制 | 以RCS进行姿态控制 | ||||
滑模控制 | 鲁棒性好;可能出现 控制量震颤、需要获得高阶微分信号 | 一般 动力着陆 | ||||
自适应控制 | 能够显式估计干扰 | |||||
制导控制协作方法 | 非线性控制 | 联立质心运动及 绕质心运动方程 | 可用摆角约束 | 无性能指标 | 反馈形式,计算量小 仅能实现对标称 轨迹的跟踪 | 一般 动力着陆 |
六自由度轨迹优化 | 姿态角速率、摆角变化率过程约束 | 燃料消耗 指标 | 可以考虑制导与姿控的相互影响;依赖精确的模型参数 |
1 | COPPER J. Single stage rocket concept selection and design: AIAA-1992-1383[R]. Reston: AIAA, 1992. |
2 | FREEMAN D C, TALAY T A, AUSTIN R E. Reusable launch vehicle technology program 1[J]. Acta Astronautica, 1997, 41(11): 777-790. |
3 | INATANI Y, NARUO Y, YONEMOTO K. Concept and preliminary flight testing of a fully reusable rocket vehicle[J]. Journal of Spacecraft and Rockets, 2001, 38(1): 36-42. |
4 | SCHARF D P, REGEHR M W, VAUGHAN G M, et al. ADAPT demonstrations of onboard large-divert Guidance with a VTVL rocket[C]∥ 2014 IEEE Aerospace Conference. Piscataway: IEEE Press, 2014: 1-18. |
5 | 宋征宇, 王聪. 运载火箭返回着陆在线轨迹规划技术发展[J]. 宇航总体技术, 2019, 3(6): 1-12. |
SONG Z Y, WANG C. Development of online trajectory planning technology for launch vehicle return and landing[J]. Astronautical Systems Engineering Technology, 2019, 3(6): 1-12 (in Chinese). | |
6 | MALYUTA D, YU Y, ELANGO P, et al. Advances in trajectory optimization for space vehicle control[J]. Annual Reviews in Control, 2021, 52: 282-315. |
7 | 宋征宇, 蔡巧言, 韩鹏鑫, 等. 重复使用运载器制导与控制技术综述[J]. 航空学报, 2021, 42(11): 525050. |
SONG Z Y, CAI Q Y, HAN P X, et al. Review of guidance and control technologies for reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525050 (in Chinese). | |
8 | SONG Z Y, WANG C, THEIL S, et al. Survey of autonomous guidance methods for powered planetary landing[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 652-674. |
9 | 张亮, 李丹钰, 崔乃刚, 等 .垂直起降重复使用火箭全剖面飞行预设性能控制[J]. 航空学报, 2023, 44(3): 328103. |
ZHANG L, LI D Y, CUI N G, et al. Full flight profile prescribed performance control for vertical takeoff and vertical landing vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(3): 328103 (in Chinese). | |
10 | SIMPLÍCIO P, MARCOS A, BENNANI S. Reusable launchers: Development of a coupled flight mechanics, guidance, and control benchmark[J]. Journal of Spacecraft and Rockets, 2020, 57(1): 74-89. |
11 | SZMUK M, ACIKMESE B, BERNING A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints: AIAA-2016-0378[R]. Reston: AIAA, 2016. |
12 | REYNOLDS T P, SZMUK M, MALYUTA D, et al. Dual quaternion-based powered descent guidance with state-triggered constraints[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(9): 1584-1599. |
13 | LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(1): 65-77. |
14 | REYNOLDS T, SZMUK M, MALYUTA D, et al. A state-triggered line of sight constraint for 6-DoF powered descent guidance problems: AIAA-2019-0924[R]. Reston: AIAA, 2019. |
15 | SZMUK M, REYNOLDS T, ACIKMESE B, et al. Successive convexification for 6-DoF powered descent guidance with compound state-triggered constraints: AIAA-2019-0926[R]. Reston: AIAA, 2019. |
16 | ROSS I. How to find minimum-fuel controllers: AIAA-2004-5346[R]. Reston: AIAA, 2004. |
17 | BLACKMORE L, ACIKMESE B, SCHARF D P. Minimum-landing-error powered-descent guidance for Mars landing using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1161-1171. |
18 | CHERRY G. A general, explicit, optimizing guidance law for rocket-propelled spaceflight: AIAA-1964-0638[R]. Reston: AIAA, 1964. |
19 | KLUMPP A. A manually retargeted automatic descent and landing system for lem:AIAA-1966-1863[R]. Reston: AIAA, 1966. |
20 | BENNETT F. Lunar descent and ascent trajectories:AIAA-1970-25[R]. Reston: AIAA, 1970. |
21 | KLUMPP A R. Apollo lunar descent guidance[J]. Automatica, 1974, 10(2): 133-146. |
22 | 韦常柱, 琚啸哲, 徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报, 2019, 40(7): 322782. |
WEI C Z, JU X Z, XU D F, et al. Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322782 (in Chinese). | |
23 | LU P. Augmented Apollo powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(3): 447-457. |
24 | LU P. Theory of fractional-polynomial powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(3): 398-409. |
25 | 张洪华, 关轶峰, 黄翔宇, 等. 嫦娥三号着陆器动力下降的制导导航与控制[J]. 中国科学: 技术科学, 2014, 44(4): 377-384. |
ZHANG H H, GUAN Y F, HUANG X Y, et al. Guidance navigation and control for Chang’E-3 powered descent[J]. Scientia Sinica (Technologica), 2014, 44(4): 377-384 (in Chinese). | |
26 | MCINNES C R. Path shaping guidance for terminal lunar descent[J]. Acta Astronautica, 1995, 36(7): 367-377. |
27 | MCINNES C R. Gravity turn descent with quadratic air drag[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(2): 393-394. |
28 | MCINNES C R. Gravity-turn descent from low circular orbit conditions[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 183-185. |
29 | 王大轶, 李铁寿, 马兴瑞. 月球探测器重力转弯软着陆的最优制导[J]. 自动化学报, 2002, 28(3): 385-390. |
WANG D Y, LI T S, MA X R. Optimal guidance for lunar gravity-turn descent[J]. Acta Automatica Sinica, 2002, 28(3): 385-390 (in Chinese). | |
30 | MCINNES C R. Direct adaptive control for gravity-turn descent[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(2): 373-375. |
31 | MCINNES C R. Nonlinear transformation methods for gravity-turn descent[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(1): 247-248. |
32 | 王大轶, 李铁寿, 严辉, 等. 月球引力转弯软着陆的制导控制研究[J]. 中国空间科学技术, 2000, 20(5): 17-23, 29. |
WANG D Y, LI T S, YAN H, et al. Guidance control for lunar gravity-turn descent[J]. Chinese Space Science and Technology, 2000, 20(5): 17-23, 29 (in Chinese). | |
33 | 朱建丰, 徐世杰. 月球重力转弯软着陆的模糊变结构控制[J]. 北京航空航天大学学报, 2007, 33(5): 539-543. |
ZHU J F, XU S J. Fuzzy variable structure control for lunar gravity-turn landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 539-543 (in Chinese). | |
34 | CITRON S J, DUNIN S E, MEISSINGER H F. A terminal guidance technique for lunar landing[J]. AIAA Journal, 1964, 2(3): 503-509. |
35 | CHOMEL C T, BISHOP R H. Analytical lunar descent guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 915-926. |
36 | YANG R Q, LIU X F. Gravity-turn-based precise landing guidance for reusable rockets[C]∥ Advances in Guidance, Navigation and Control. Singapore: Springer, 2022: 3423-3434. |
37 | CHENG R K, CONRAD D A, MEREDITH C M. Design considerations for Surveyor guidance[J]. Journal of Spacecraft and Rockets, 1966, 3(11): 1569-1576. |
38 | INGOLDBY R N. Guidance and control system design of the Viking planetary lander[J]. Journal of Guidance and Control, 1978, 1(3): 189-196. |
39 | SOSTARIC R, REA J. Powered descent guidance methods for the moon and Mars: AIAA-2005-6287[R]. Reston: AIAA, 2005. |
40 | PLOEN S, ACIKMESE B, WOLF A. A comparison of powered descent guidance laws for Mars pinpoint landing: AIAA-2006-6676[R]. Reston: AIAA, 2006. |
41 | NAJSON F, MEASE K D. Computationally inexpensive guidance algorithm for fuel-efficient terminal descent[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4): 955-964. |
42 | UENO S, YAMAGUCHI Y. 3-dimensional near-minimum fuel guidance law of a lunar landing module: AIAA-1999-3983[R]. Reston: AIAA, 1999. |
43 | CHRISTOPHER N D. An optimal guidance law for planetary landing: AIAA-1997-3709[R]. Reston: AIAA, 1997. |
44 | EBRAHIMI B, BAHRAMI M, ROSHANIAN J. Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers[J]. Acta Astronautica, 2008, 62(10-11): 556-562. |
45 | GUO Y N, HAWKINS M, WIE B. Applications of generalized zero-effort-miss/zero-effort-velocity feedback guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 810-820. |
46 | SIMPLÍCIO P, MARCOS A, BENNANI S. Guidance of reusable launchers: Improving descent and landing performance[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(10): 2206-2219. |
47 | GUO Y N, HAWKINS M, WIE B. Optimal feedback guidance algorithms for planetary landing and asteroid intercept[J]. Advances in the Astronautical Sciences, 2012, 142: 2913-2931. |
48 | ZHOU L Y, XIA Y Q. Improved ZEM/ZEV feedback guidance for Mars powered descent phase[J]. Advances in Space Research, 2014, 54(11): 2446-2455. |
49 | GUO Y N, HAWKINS M, WIE B. Waypoint-optimized zero-effort-miss/zero-effort-velocity feedback guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 799-809. |
50 | FURFARO R, GAUDET B, WIBBEN D R, et al. Development of non-linear guidance algorithms for asteroids close-proximity operations: AIAA-2013-4711[R]. Reston: AIAA, 2013. |
51 | MEDITCH J. On the problem of optimal thrust programming for a lunar soft landing[J]. IEEE Transactions on Automatic Control, 1964, 9(4): 477-484. |
52 | HULL D G. Thrust programs for minimum propellant consumption during the vertical take-off and landing of a rocket[J]. Journal of Optimization Theory and Applications, 1967, 1(1): 53-69. |
53 | LAWDEN D F. Optimal trajectories for space navigation[M]. London: Butterworths, 1963. |
54 | TOPCU U, CASOLIVA J, MEASE K. Fuel efficient powered descent guidance for Mars landing: AIAA-2005-6286[R]. Reston: AIAA, 2005. |
55 | YOU S X, DAI R, REA J R. Theoretical analysis of fuel-optimal powered descent problem with state constraints[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(12): 2350-2359. |
56 | REA J, BISHOP R. Analytical dimensional reduction of a fuel optimal powered descent subproblem: AIAA-2010-8026[R]. Reston: AIAA, 2010. |
57 | LU P. Propellant-optimal powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(4): 813-826. |
58 | ACIKMESE B, AUNG M, CASOLIVA J, et al. Flight testing of trajectories computed by G-FOLD: Fuel optimal large divert guidance algorithm for planetary landing[J]. Advances in the Astronautical Sciences, 2013, 148: 386. |
59 | DUERI D, ZHANG J, ACIKMESE B. Automated custom code generation for embedded, real-time second order cone programming[J]. IFAC Proceedings Volumes, 2014, 47(3): 1605-1612. |
60 | DUERI D, ACIKMESE B, SCHARF D P, et al. Customized real-time interior-point methods for onboard powered-descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2): 197-212. |
61 | MALYUTA D, REYNOLDS T P, SZMUK M, et al. Convex optimization for trajectory generation: A tutorial on generating dynamically feasible trajectories reliably and efficiently[J]. IEEE Control Systems, 2022, 42(5): 40-113. |
62 | ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1353-1366. |
63 | ACIKMESE B, BLACKMORE L. Lossless convexification of a class of optimal control problems with non-convex control constraints[J]. Automatica, 2011, 47(2): 341-347. |
64 | ACIKMESE B, CARSON J M, BLACKMORE L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2104-2113. |
65 | CARSON J M, ACIKMESE B, BLACKMORE L, et al. Capabilities of convex powered-descent guidance algorithms for pinpoint and precision landing[C]∥ 2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 1-8. |
66 | CARSON J M, ACIKMESE B, BLACKMORE L. Lossless convexification of powered-descent guidance with non-convex thrust bound and pointing constraints[C]∥ Proceedings of the 2011 American Control Conference. Piscataway: IEEE Press, 2011: 2651-2656. |
67 | MALYUTA D, ACIKMESE B. Lossless convexification of optimal control problems with semi-continuous inputs[J]. IFAC-PapersOnLine, 2020, 53(2): 6843-6850. |
68 | BLACKMORE L, ACIKMESE B, CARSON J M. Lossless convexification of control constraints for a class of nonlinear optimal control problems[J]. Systems & Control Letters, 2012, 61(8): 863-870. |
69 | HARRIS M W, ACIKMESE B. Lossless convexification for a class of optimal control problems with linear state constraints[C]∥ 52nd IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2013: 7113-7118. |
70 | HARRIS M W, ACIKMESE B. Lossless convexification of non-convex optimal control problems for state constrained linear systems[J]. Automatica, 2014, 50(9): 2304-2311. |
71 | HARRIS M W, ACIKMESE B. Lossless convexification for a class of optimal control problems with quadratic state constraints[C]∥ 2013 American Control Conference. Piscataway: IEEE Press, 2013: 3415-3420. |
72 | HARRIS M W, ACIKMESE B. Maximum divert for planetary landing using convex optimization[J]. Journal of Optimization Theory and Applications, 2014, 162(3): 975-995. |
73 | LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 750-765. |
74 | MAO Y Q, SZMUK M, ACIKMESE B. Successive convexification of non-convex optimal control problems and its convergence properties[C]∥ 2016 IEEE 55th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2016: 3636-3641. |
75 | 邵楠, 闫晓东. 火箭垂直回收多阶段最优轨迹规划方法[J]. 宇航学报, 2019, 40(10): 1187-1196. |
SHAO N, YAN X D. Multi-stage trajectory optimization for vertical pin-point landing of a reusable launch vehicle[J]. Journal of Astronautics, 2019, 40(10): 1187-1196 (in Chinese). | |
76 | WANG J B, CUI N G. A pseudospectral-convex optimization algorithm for rocket landing guidance: AIAA-2018-1871[R]. Reston: AIAA, 2018. |
77 | 王劲博, 崔乃刚, 郭继峰, 等. 火箭返回着陆问题高精度快速轨迹优化算法[J]. 控制理论与应用, 2018, 35(3): 389-398. |
WANG J B, CUI N G, GUO J F, et al. High precision rapid trajectory optimization algorithm for launch vehicle landing[J]. Control Theory & Applications, 2018, 35(3): 389-398 (in Chinese). | |
78 | 王嘉炜, 张冉, 郝泽明, 等. 基于Proximal-Newton-Kantorovich凸规划的空天飞行器实时轨迹优化[J]. 航空学报, 2020, 41(11): 624051. |
WANG J W, ZHANG R, HAO Z M, et al. Real-time trajectory optimization for hypersonic vehicles with Proximal-Newton-Kantorovich convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 624051 (in Chinese). | |
79 | WANG J W, ZHANG R, LI H F. Onboard optimization of multi-arc trajectories with constraints on duration of arcs[J]. Acta Astronautica, 2022, 192: 434-442. |
80 | 郝泽明, 张冉, 王嘉炜, 等. 大气层内固体火箭实时轨迹优化方法[J]. 宇航学报, 2021, 42(11): 1416-1426. |
HAO Z M, ZHANG R, WANG J W, et al. Real-time atmospheric trajectory optimization for solid rockets[J]. Journal of Astronautics, 2021, 42(11): 1416-1426 (in Chinese). | |
81 | WANG J B, CUI N G, WEI C Z. Optimal rocket landing guidance using convex optimization and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5): 1078-1092. |
82 | XIONG F F, LI C, ZHAO Y, et al. Rocket landing guidance using convex optimization and proportional navigation considering performance-limited engine[J]. Acta Astronautica, 2022, 201: 209-223. |
83 | 安泽, 熊芬芬, 梁卓楠. 基于偏置比例导引与凸优化的火箭垂直着陆制导[J]. 航空学报, 2020, 41(5): 323606. |
AN Z, XIONG F F, LIANG Z N. Landing-phase guidance of rocket using bias proportional guidance and convex optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323606 (in Chinese). | |
84 | LI J Q, LONG Y S, SU M, et al. Fault-tolerant guidance of rocket vertical landing phase based on MPC framework[J]. International Journal of Aerospace Engineering, 2022, 2022: 1-11. |
85 | BLACKMORE L. Autonomous precision landing of space rockets[C]∥ Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium. Washington: The Bridge, 2016, 46: 15-20. |
86 | SCHARF D P, AÇıKMEŞE B, DUERI D, et al. Implementation and experimental demonstration of onboard powered-descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2): 213-229. |
87 | REYNOLDS T, MALYUTA D, MESBAHI M, et al. Funnel synthesis for the 6-DOF powered descent guidance problem: AIAA-2021-0504[R]. Reston: AIAA, 2021. |
88 | SÁNCHEZ-SÁNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135. |
89 | WANG J B, MA H J, LI H X, et al. Real-time guidance for powered landing of reusable rockets via deep learning[J]. Neural Computing and Applications, 2023, 35(9): 6383-6404. |
90 | YOU S X, WAN C H, DAI R, et al. Learning-based onboard guidance for fuel-optimal powered descent[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(3): 601-613. |
91 | HENDRIX S G, KENNY V, YOU S X, et al. Experimental testing for a learning-based powered-descent guidance algorithm: AIAA-2022-0952. Reston: AIAA, 2022. |
92 | LI W B, GONG S P. Free final-time fuel-optimal powered landing guidance algorithm combing lossless convex optimization with deep neural network predictor[J]. Applied Sciences, 2022, 12(7): 3383. |
93 | SONG Y, MIAO X Y, CHENG L, et al. The feasibility criterion of fuel-optimal planetary landing using neural networks[J]. Aerospace Science and Technology, 2021, 116: 106860. |
94 | 何林坤, 张冉, 龚庆海. 基于强化学习的可回收运载火箭着陆制导[J]. 空天防御, 2021, 4(3): 33-40. |
HE L K, ZHANG R, GONG Q H. Landing guidance of reusable launch vehicle based on reinforcement learning[J]. Air & Space Defense, 2021, 4(3): 33-40 (in Chinese). | |
95 | FURFARO R, SCORSOGLIO A, LINARES R, et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica, 2020, 171: 156-171. |
96 | D’AMBROSIO A, SCHIASSI E, CURTI F, et al. Physics-informed neural networks applied to a series of constrained space guidance problems[C]∥ 2021 AAS/AIAA Astrodynamics Specialist Conference. American Astronautical Society, 2021. |
97 | 崔乃刚, 吴荣, 韦常柱, 等. 火箭垂直返回双幂次固定时间收敛滑模控制方法[J]. 哈尔滨工业大学学报, 2020, 52(4): 15-24. |
CUI N G, WU R, WEI C Z, et al. Double-order power fixed-time convergence sliding mode control method for launch vehicle vertical returning[J]. Journal of Harbin Institute of Technology, 2020, 52(4): 15-24 (in Chinese). | |
98 | ZHANG L, WEI C Z, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica, 2019, 159: 362-370. |
99 | LIANG X H, WANG Q, HU C H, et al. Fixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faults[J]. Aerospace Science and Technology, 2020, 107: 106314. |
100 | JU X Z, WEI C Z, XU H C, et al. Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints[J]. ISA Transactions, 2022, 129: 55-72. |
101 | JU X Z, WEI C Z, ZHANG L, et al. Semi-globally smooth control for VTVL reusable launch vehicle under actuator faults and attitude constraints[J]. Acta Astronautica, 2022, 191: 528-546. |
102 | KWON J W, LEE D H, BANG H. Virtual trajectory augmented landing control based on dual quaternion for lunar lander[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(9): 2044-2057. |
103 | Van LEEUWEN S, SKIBIK T, NICOTRA M, et al. A nonlinear predictive control strategy for landing on an asteroid[C]∥ 2022 American Control Conference (ACC). Piscataway: IEEE Press, 2022: 443-449. |
104 | JOHNSON M. A parameterized approach to the design of lunar lander attitude controllers: AIAA-2006-6564[R]. Reston: AIAA, 2006. |
105 | SAGLIANO M, DUMKE M, THEIL S. Simulations and flight tests of a new nonlinear controller for the EAGLE lander[J]. Journal of Spacecraft and Rockets, 2018, 56(1): 259-272. |
106 | ORR J S, SHTESSEL Y B. Lunar spacecraft powered descent control using higher-order sliding mode techniques[J]. Journal of the Franklin Institute, 2012, 349(2): 476-492. |
107 | 伊鑫, 潘豪, 黄聪, 等. 垂直回收运载火箭高精度姿态控制技术[J]. 深空探测学报(中英文), 2022, 9(5): 492-497. |
YI X, PAN H, HUANG C, et al. High precision attitude control technology of vertical landing returning rocket[J]. Journal of Deep Space Exploration, 2022, 9(5): 492-497 (in Chinese). | |
108 | 李璟澜, 杨秦敏. 带预设性能的火箭垂直着陆段姿态自适应控制设计[J]. 宇航总体技术, 2020, 4(5): 1-7. |
LI J L, YANG Q M. Adaptive attitude control in the landing phase of rocket vertical recovery with prescribed performance[J]. Astronautical Systems Engineering Technology, 2020, 4(5): 1-7 (in Chinese). | |
109 | SIMPLÍCIO P, MARCOS A, BENNANI S. Launcher flight control design using robust wind disturbance observation[J]. Acta Astronautica, 2021, 186: 303-318. |
110 | WONG E C, SINGH G, MASCIARELLI J P. Guidance and control design for hazard avoidance and safe landing on Mars[J]. Journal of Spacecraft and Rockets, 2006, 43(2): 378-384. |
111 | DELAUNE J, DE ROSA D, HOBBS S. Guidance and control system design for lunar descent and landing: AIAA-2010-8028[R]. Reston: AIAA, 2010. |
112 | REW D Y, JU G, LEE S, et al. Control system design of the Korean lunar lander demonstrator[J]. Acta Astronautica, 2014, 94(1): 328-337. |
113 | STENGEL R F. Manual attitude control of the lunar module[J]. Journal of Spacecraft and Rockets, 1970, 7(8): 941-948. |
114 | BILIMORIA K D. Effects of control power and guidance cues on lunar lander handling qualities[J]. Journal of Spacecraft and Rockets, 2009, 46(6): 1261-1271. |
115 | BIHARI B. Challenges of roll orientation with respect to vehicle heading at touchdown for the Orion command module: AAS 08-068[R]. Breckenridge: American Astronautical Society, 2008. |
116 | YAMASHITA T, UO M, HASHIMOTO T. Nonlinear six-degree-of-freedom control for flexible spacecraft[J]. IFAC Proceedings Volumes, 2001, 34(15): 344-349. |
117 | ZHANG H H, LI J, WANG Z G, et al. Guidance navigation and control for Chang’E-5 powered descent[J]. Space: Science & Technology, 2021, 2021: 9823609. |
118 | HUANG X Y, XU C, HU J C, et al. Powered-descent landing GNC system design and flight results for Tianwen-1 mission[J]. Astrodynamics, 2022, 6(1): 3-16. |
119 | WALL J H, ORR J S, VANZWIETEN T S. Space launch system implementation of adaptive augmenting control:AIAA 14-051[R]. Breckenridge: American Astronautical Society, 2014. |
120 | HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. |
121 | 韩京清. 自抗扰控制技术[J]. 前沿科学, 2007, 1(1): 24-31. |
HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science, 2007, 1(1): 24-31 (in Chinese). | |
122 | 果琳丽, 谷良贤, 田林, 等. 载人月面着陆器动力下降段自适应姿态控制[J]. 哈尔滨工业大学学报, 2013, 45(5): 119-123. |
GUO L L, GU L X, TIAN L, et al. Adaptive attitude control for manned lunar lander during the powered descent phase[J]. Journal of Harbin Institute of Technology, 2013, 45(5): 119-123 (in Chinese). | |
123 | SUN L, SUN G, JIANG J J. Adaptive guidance and control of uncertain lunar landers in terminal landing phases[J]. Mechanical Systems and Signal Processing, 2020, 142: 106763. |
124 | WIDNALL W S. The minimum-time thrust-vector control law in the Apollo lunar-module autopilot[J]. IFAC Proceedings Volumes, 1970, 3(1): 136-153. |
125 | PONTANI M, CELANI F, CARLETTA S. Lunar descent and landing via two-phase explicit guidance and pulse-modulated reduced-attitude control: AIAA-2022-0252[R]. Reston: AIAA, 2022. |
126 | BOSKOVIC J D, JACKSON J A, MEHRA R K, et al. Adaptive fault tolerant control design for a model of DC-X dynamics[C]∥ 2008 American Control Conference. Piscataway: IEEE Press, 2008: 1046-1051. |
127 | SANTOSO F, GARRATT M A, ANAVATTI S G. State-of-the-art integrated guidance and control systems in unmanned vehicles: A review[J]. IEEE Systems Journal, 2021, 15(3): 3312-3323. |
128 | 郭建国, 梁乐成, 周敏, 等. 高速飞行器俯冲段制导控制一体化综述[J]. 航空兵器, 2023, 30(1): 1-10. |
GUO J G, LIANG L C, ZHOU M, et al. Overview of integrated guidance and control for hypersonic vehicles in dive phase[J]. Aero Weaponry, 2023, 30(1): 1-10 (in Chinese). | |
129 | 薛文超, 黄朝东, 黄一. 飞行制导控制一体化设计方法综述[J]. 控制理论与应用, 2013, 30(12): 1511-1520. |
XUE W C, HUANG C D, HUANG Y. Design methods for the integrated guidance and control system[J]. Control Theory & Applications, 2013, 30(12): 1511-1520 (in Chinese). | |
130 | SHTESSEL Y B, TOURNES C H. Integrated higher-order sliding mode guidance and autopilot for dual control missiles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 79-94. |
131 | 董飞垚, 雷虎民, 周池军, 等. 导弹鲁棒高阶滑模制导控制一体化研究[J]. 航空学报, 2013, 34(9): 2212-2218. |
DONG F Y, LEI H M, ZHOU C J, et al. Research of integrated robust high order sliding mode guidance and control for missiles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2212-2218 (in Chinese). | |
132 | SEYEDIPOUR S H, JEGARKANDI M F, SHAMAG HDARI S. Nonlinear integrated guidance and control based on adaptive backstepping scheme[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(3): 415-424. |
133 | 舒燕军, 唐硕. 轨控式复合控制导弹制导与控制一体化反步设计[J]. 宇航学报, 2013, 34(1): 79-85. |
SHU Y J, TANG S. Integrated guidance and control backstepping design for blended control missile based on NDO[J]. Journal of Astronautics, 2013, 34(1): 79-85 (in Chinese). | |
134 | 张尧, 郭杰, 唐胜景, 等. 导弹制导与控制一体化三通道解耦设计方法[J]. 航空学报, 2014, 35(12): 3438-3450. |
ZHANG Y, GUO J, TANG S J, et al. Integrated missile guidance and control three-channel decoupling design method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3438-3450 (in Chinese). | |
135 | CHWA D, CHOI J Y, ANAVATTI S G. Observer-based adaptive guidance law considering target uncertainties and control loop dynamics[J]. IEEE Transactions on Control Systems Technology, 2006, 14(1): 112-123. |
136 | 刘晓东, 黄万伟, 杜立夫. 含攻击角度约束的三维制导控制一体化鲁棒设计方法[J]. 控制理论与应用, 2016, 33(11): 1535-1542. |
LIU X D, HUANG W W, DU L F. Robust design approach of three-dimensional integrated guidance and control containing impact angle constraints[J]. Control Theory & Applications, 2016, 33(11): 1535-1542 (in Chinese). | |
137 | ZHANG F, DUAN G R. Integrated translational and rotational control for the terminal landing phase of a lunar module[J]. Aerospace Science and Technology, 2013, 27(1): 112-126. |
138 | CORTÉS-MARTÍNEZ R, KUMAR K D, RODRÍGUE Z-CORTÉS H. Precise power descent control of a lunar lander using a single thruster[J]. Acta Astronautica, 2021, 186: 473-485. |
139 | MALYUTA D, REYNOLDS T, SZMUK M, et al. Discretization performance and accuracy analysis for the rocket powered descent guidance problem: AIAA-2019-0925[R]. Reston: AIAA, 2019. |
140 | TOPCU U, CASOLIVA J, MEASE K D. Minimum-fuel powered descent for Mars pinpoint landing[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 324-331. |
141 | REYNOLDS T P, MESBAHI M. Optimal planar powered descent with independent thrust and torque[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(7): 1225-1231. |
142 | REYNOLDS T, MALYUTA D, MESBAHI M, et al. A real-time algorithm for non-convex powered descent guidance: AIAA-2020-0844[R]. Reston: AIAA, 2020. |
143 | HE X, ZHAO K Y, CHU X W. AutoML: a survey of the state-of-the-art[J]. Knowledge-Based Systems, 2021, 212: 106622. |
144 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
[1] | 单圣哲, 张伟伟. 基于自博弈深度强化学习的空战智能决策方法[J]. 航空学报, 2024, 45(4): 328723-328723. |
[2] | 张智, 袁晗, 张晚晴. 基于重力转弯解析解的动力减速制导方法[J]. 航空学报, 2023, 44(23): 628483-628483. |
[3] | 包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报, 2023, 44(23): 629555-629555. |
[4] | 陈星伦, 张冉, 张晓燕. 大气层内动力下降段的组合干扰补偿制导[J]. 航空学报, 2023, 44(23): 628465-628465. |
[5] | 吕艳, 刘琳, 张广勇, 梁磊, 郑学升. 空射火箭可重复使用技术[J]. 航空学报, 2023, 44(23): 628083-628083. |
[6] | 顾孟奇, 朱家才, 郭万林, 薛松. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报, 2023, 44(23): 628299-628299. |
[7] | 刘育玮, 程玉强, 吴建军. 航天推进系统中的智能控制方法研究进展[J]. 航空学报, 2023, 44(15): 528505-528505. |
[8] | 惠俊鹏, 汪韧, 俞启东. 基于强化学习的再入飞行器“新质”走廊在线生成技术[J]. 航空学报, 2022, 43(9): 325960-325960. |
[9] | 王皓, 陈根良. 机器人型装备在航空装配中的应用现状与研究展望[J]. 航空学报, 2022, 43(5): 626128-626128. |
[10] | 胡庆雷, 邵小东, 杨昊旸, 段超. 航天器多约束姿态规划与控制:进展与展望[J]. 航空学报, 2022, 43(10): 527351-527351. |
[11] | 蔡国飙, 张百一, 贺碧蛟, 翁惠焱, 刘立辉. 真空羽流智能化计算[J]. 航空学报, 2022, 43(10): 527352-527352. |
[12] | 孙智孝, 杨晟琦, 朴海音, 白成超, 葛俊. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799-525799. |
[13] | 黄旭星, 李爽, 杨彬, 孙盼, 刘学文, 刘新彦. 人工智能在航天器制导与控制中的应用综述[J]. 航空学报, 2021, 42(4): 524201-524201. |
[14] | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689-524689. |
[15] | 丁国如, 孙佳琛, 王海超, 焦雨涛. 复杂电磁环境下频谱智能管控技术探讨[J]. 航空学报, 2021, 42(4): 524750-524750. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 358
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学