1 |
张海龙, 夏维, 胡笑旋, 等. 面向多障碍物海面卫星搜索动目标方法[J]. 系统工程与电子技术, 2018, 40(10): 2256-2262.
|
|
ZHANG H L, XIA W, HU X X, et al. Method for moving targets search by satellites on multi-obstacle sea[J]. Systems Engineering and Electronics, 2018, 40(10): 2256-2262 (in Chinese).
|
2 |
MEI G L. Improved satellite scheduling algorithm for moving target[C]∥ Proceedings of The fourth International Conference on Information Science and Cloud Computing—PoS(ISCC2015). Trieste: Sissa Medialab, 2016.
|
3 |
MAZZARELLA F, ARGUEDAS V F, VESPE M. Knowledge-based vessel position prediction using historical AIS data[C]∥2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF). Piscataway: IEEE Press, 2015: 1-6.
|
4 |
RAJAMANICKAM M. Quantized Kalman filter-based pattern matching for detection and tracking of moving objects[J]. International Journal of Engineering and Advanced Technology, 2019, 9(1): 3842-3851.
|
5 |
GUO S, LIU C, GUO Z W, et al. Trajectory prediction for ocean vessels base on K-order multivariate Markov chain[C]∥International Conference on Wireless Algorithms, Systems, and Applications. Cham: Springer, 2018: 140-150.
|
6 |
TONG X P, CHEN X, SANG L Z, et al. Vessel trajectory prediction in curving channel of inland river[C]∥2015 International Conference on Transportation Information and Safety (ICTIS). Piscataway: IEEE Press, 2015: 706-714.
|
7 |
DALSNES B R, HEXEBERG S, FLÅTEN A L, et al. The neighbor course distribution method with Gaussian mixture models for AIS-based vessel trajectory prediction[C]∥2018 21st International Conference on Information Fusion (FUSION). Piscataway: IEEE Press, 2018: 580-587.
|
8 |
胡笑旋, 夏维, 靳鹏, 等. 成像卫星任务规划理论与方法 [M]. 北京: 科学出版社, 2021.
|
|
HU X X, XIA W, JIN P, et al. Planning theory and method of earth observation satellite[M]. Beijing: China Science Publishing & Media, 2021 (in Chinese).
|
9 |
赵琳, 王硕, 郝勇, 等. 基于地面任务-空间姿态映射的敏捷卫星任务规划[J]. 航空学报, 2018, 39(10): 322066.
|
|
ZHAO L, WANG S, HAO Y, et al. Mission planning for agile satellite based on the mapping relationship between ground missions and spatial attitudes[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 322066 (in Chinese).
|
10 |
PENG G S, SONG G P, HE Y M, et al. Solving the agile earth observation satellite scheduling problem with time-dependent transition times[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1614-1625.
|
11 |
QI J T, GUO J J, WANG M M, et al. A cooperative autonomous scheduling approach for multiple earth observation satellites with intensive missions[J]. IEEE Access, 2021, 9: 61646-61661.
|
12 |
罗棕, 杜春, 陈浩, 等. 基于Transformer层次预测的多星应急观测任务规划方法[J]. 航空学报, 2021, 42(4): 524721.
|
|
LUO Z, DU C, CHEN H, et al. Multi-satellite scheduling approach for emergency scenarios based on hierarchical forecasting with Transformer network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524721 (in Chinese).
|
13 |
XU Y J, LIU X L, HE R J, et al. Multi-satellite scheduling framework and algorithm for very large area observation[J]. Acta Astronautica, 2020, 167: 93-107.
|
14 |
ZHU W M, HU X X, XIA W, et al. A three-phase solution method for the scheduling problem of using earth observation satellites to observe polygon requests[J]. Computers & Industrial Engineering, 2019, 130: 97-107.
|
15 |
刘华俊, 蔡波, 朱庆. 一种成像卫星区域覆盖的自适应规划方法[J]. 武汉大学学报(信息科学版), 2017, 42(12): 1719-1724.
|
|
LIU H J, CAI B, ZHU Q. Self-adaptive planning method of imaging reconnaissance satellites area coverage[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1719-1724 (in Chinese).
|
16 |
E Z B, SHI R H, GAN L, et al. Multi-satellites imaging scheduling using individual reconfiguration based integer coding genetic algorithm[J]. Acta Astronautica, 2021, 178: 645-657.
|
17 |
NIU X N, ZHAI X J, TANG H, et al. Multi-satellite scheduling approach for dynamic areal tasks triggered by emergent disasters[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B1: 475-481.
|
18 |
杨纪伟, 付伟, 韩丽, 等. 基于全球网格的卫星成像区域目标规划算法[J]. 航天器工程, 2021, 30(1): 31-37.
|
|
YANG J W, FU W, HAN L, et al. Regional target planning algorithm of satellite imaging based on global grid[J]. Spacecraft Engineering, 2021, 30(1): 31-37 (in Chinese).
|
19 |
史良树, 黄鹏, 战鹰, 等. 应用近似算法的光学遥感卫星区域目标成像任务规划方法[J]. 航天器工程, 2017, 26(2): 7-13.
|
|
SHI L S, HUANG P, ZHAN Y, et al. Region target imaging task scheduling method based on approximation algorithm for optical remote sensing satellite[J]. Spacecraft Engineering, 2017, 26(2): 7-13 (in Chinese).
|
20 |
樊育, 刘莹莹, 周军. 面向多星区域观测调度的改进型自适应遗传算法[J]. 中国空间科学技术, 2021, 41(1): 38-47.
|
|
FAN Y, LIU Y Y, ZHOU J. An improved adaptive genetic algorithm for multi-satellite area observation scheduling[J]. Chinese Space Science and Technology, 2021, 41(1): 38-47 (in Chinese).
|
21 |
CHEN Y X, XU M Z, SHEN X, et al. A multi-objective modeling method of multi-satellite imaging task planning for large regional mapping[J]. Remote Sensing, 2020, 12(3): 344.
|
22 |
LIU S F, HODGSON M E. Satellite image collection modeling for large area hazard emergency response[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 118: 13-21.
|
23 |
NIU X N, TANG H, WU L X. Satellite scheduling of large areal tasks for rapid response to natural disaster using a multi-objective genetic algorithm[J]. International Journal of Disaster Risk Reduction, 2018, 28: 813-825.
|
24 |
杜津铭, 吴云华, 陈志明, 等. 海上动态目标潜在区域博弈预测及搜索方法[J]. 系统工程与电子技术, 2021, 43(9): 2508-2515.
|
|
DU J M, WU Y H, CHEN Z M, et al. Latent area prediction and search method for marine moving targets using game theory[J]. Systems Engineering and Electronics, 2021, 43(9): 2508-2515 (in Chinese).
|
25 |
冉承新, 王慧林, 熊纲要, 等. 基于改进遗传算法的移动目标成像侦测任务规划问题研究[J]. 宇航学报, 2010, 31(2): 457-465.
|
|
RAN C X, WANG H L, XIONG G Y, et al. Research on mission-planning of ocean moving targets imaging reconnaissance based on improved genetic algorithm[J]. Journal of Astronautics, 2010, 31(2): 457-465 (in Chinese).
|
26 |
王慧林, 邱涤珊, 马满好, 等. 基于先验信息的海洋移动目标卫星成像侦测任务规划[J]. 火力与指挥控制, 2011, 36(3): 105-110.
|
|
WANG H L, QIU D S, MA M H, et al. Research on mission-planning of satellite imaging reconnaissance for ocean moving targets based on the prior information[J]. Fire Control and Command Control, 2011, 36(3): 105-110 (in Chinese).
|