航空学报 > 2022, Vol. 43 Issue (10): 527752-527752   doi: 10.7527/S1000-6893.2021.27752

超高灵敏极弱磁场与惯性测量科学装置与零磁科学展望

房建成1,2, 魏凯1,2, 江雷3,4, 向岷1,2, 陆吉玺1,2   

  1. 1. 北京航空航天大学 大科学装置研究院, 北京 100191;
    2. 杭州极弱磁场重大科技基础设施研究院, 杭州 310051;
    3. 中国科学院 理化技术研究所, 北京 100080;
    4. 中国科学院大学 未来技术学院, 北京 100049
  • 收稿日期:2022-07-04 修回日期:2022-07-12 发布日期:2022-10-12
  • 通讯作者: 房建成,E-mail:fangjiancheng@buaa.edu.cn;魏凯,E-mail:weikai@buaa.edu.cn;江雷,E-mail:jianglei@iccas.ac.cn E-mail:fangjiancheng@buaa.edu.cn;weikai@buaa.edu.cn;jianglei@iccas.ac.cn

Scientific facilities for ultrasensitive measurement of magnetic field and inertial rotation and prospects of zero-magnetism science

FANG Jiancheng1,2, WEI Kai1,2, JIANG Lei3,4, XIANG Min1,2, LU Jixi1,2   

  1. 1. Institute of Large-Scale Scientific Facility, Beihang University, Beijing 100191, China;
    2. Hangzhou Extremely Weak Magnetic Field Major Science and Technology Infrastructure Research Institute, Hangzhou 310051, China;
    3. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China;
    4. School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-07-04 Revised:2022-07-12 Published:2022-10-12

摘要: 超高灵敏极弱磁场与惯性量子精密测量技术已被广泛应用于人体脑磁和心磁等生物磁信号成像领域,以及暗物质和第五力探测、固有电偶极矩测量和基本对称性破缺验证等前沿基础物理探索,为认识物质世界提供了强有力的工具;同时在磁异常探测和高精度惯性导航系统等国家安全领域有着迫切应用需求。继续冲击超高灵敏度测量纪录和打造极弱磁场环境,是进一步探索基础物理研究边界、拓展生物磁成像应用和服务国家战略需求的关键。首先,对超高灵敏极弱磁场与惯性测量科学装置和基础应用进行概要介绍,涉及工作原理、系统组成和设计分析方法。然后,对无自旋交换弛豫原子磁强计和零磁空间进行概要分析,为指标性能进一步提升提供思路。最后,虽然强磁场环境下物性研究已经取得丰硕成果,但是极弱磁场环境中的基础科学研究十分匮乏,提出零磁科学基础研究设想,基于超高灵敏极弱磁场与惯性测量科学装置的技术基础,利用极弱磁场环境、超高灵敏磁测量和精密磁场操控方法,开展零磁医学、零磁生物学、零磁化学和零磁材料学的基础科学研究,有望构建零磁科学系统理论。

关键词: 极弱磁场与惯性测量, 磁屏蔽空间, 生物磁信号成像, 超标准模型探索, 零磁科学

Abstract: Ultrasensitive atomic magnetometer and co-magnetometer have provided powerful tools for studies on the material world. These devices are widely used in imaging of biomagnetic signals and frontier physics research, such as magnetocardiography, magnetoencephalography, search for dark matter and the fifth force, measurement of permanent electric dipole moment, and violation of fundamental symmetry, and are urgently needed in national security areas such as magnetic anomaly detection and high-precision inertial navigation systems. Improving sensitivity records and building ultra-low magnetic field environment are pivotal for further research of fundamental physics, biomagnetic imaging and major national needs. Firstly, schematic introductions of ultrasensitive atomic magnetometer and co-magnetometer as well as their basic applications are presented, including the working principle, experiment setup, and theoretical model. Secondly, schematic summaries of atomic magnetometer and magnetic shield room are presented, specifying the ways to improve the performance. Finally, considering the basic research on the extremely weak magnetic field environment is still very scarce in spite of fruitful results of research on physical properties in the strong magnetic field environment, this paper proposes a basic research concept of zero-magnetism science. Based on the facilities of ultrasensitive atomic magnetometer, co-magnetometer and magnetic shield room, the technologies of ultra-low magnetic field environment, ultrasensitive magnetic measurement, and precise magnetic field manipulation are utilized to conduct the basic scientific research including zero-magnetism medicine, zero-magnetism biology, zero-magnetism chemistry and zero-magnetism materials science, hoping to develop a theoretical system for zero-magnetism science.

Key words: ultra-weak magnetic field and inertial rotation measurement, magnetic shielded space, biomagnetic imaging, exploration beyond standard model, zero-magnetism science

中图分类号: