任乐亮1(), 鲜勇1, 李少朋1,2, 雷刚1, 伍薇1, 李冰1
收稿日期:
2022-09-01
修回日期:
2022-09-16
接受日期:
2022-11-05
出版日期:
2023-07-25
发布日期:
2022-11-17
通讯作者:
任乐亮
E-mail:renleliang@126.com
基金资助:
Leliang REN1(), Yong XIAN1, Shaopeng LI1,2, Gang LEI1, Wei WU1, Bing LI1
Received:
2022-09-01
Revised:
2022-09-16
Accepted:
2022-11-05
Online:
2023-07-25
Published:
2022-11-17
Contact:
Leliang REN
E-mail:renleliang@126.com
Supported by:
摘要:
针对弹道导弹大机动突防后精确制导面临的落点预测需求,提出了一种基于改进二阶优化器学习的神经网络落点预测方法。基于椭圆弹道理论对当前飞行状态的落点进行预测,再求解与真实落点的偏差,并对偏差量进行解耦处理,进而构建了以飞行状态量为输入、以偏差量为输出的样本集,大幅降低了神经网络学习难度。为提高神经网络预测精度,采用3个神经网络分别预测偏差量的3个分量;利用矩阵分块运算法则建立了适用于多GPU并行的改进Levenberg-Marquardt优化器,缩短了网络学习时间且降低了对GPU显存的需求量。设计了详细的仿真实验对该方法的优势和计算复杂度进行了分析,仿真结果表明,落点预测模型的学习难度小,预测精度高,实时性好。在训练集和测试集所含869 320个样本中,
中图分类号:
任乐亮, 鲜勇, 李少朋, 雷刚, 伍薇, 李冰. 基于改进二阶优化器并行学习的弹道导弹神经网络落点预测方法[J]. 航空学报, 2023, 44(14): 327964-327964.
Leliang REN, Yong XIAN, Shaopeng LI, Gang LEI, Wei WU, Bing LI. A neural network model for impact point prediction of ballistic missile based on improved second-order optimizer with parallel learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 327964-327964.
表5
训练耗时和显存占用量
网络模型 | 网络节点数 | 1 000代训练平均耗时/s | 耗时降低率/% | 显存占用量/MB | 显存占用量/MB | ||||
---|---|---|---|---|---|---|---|---|---|
隐藏层1 | 隐藏层2 | GPU1 | GPU2 | GPU1 | GPU2 | ||||
5 | 2 | 2 | 59.97 | 32.30 | 2 105 | 2 003 | 1 563 | 1 461 | |
1 | 88.58 | 3 233 | 2 127 | ||||||
6 | 5 | 2 | 62.26 | 36.00 | 2 483 | 2 381 | 1 743 | 1 641 | |
1 | 97.28 | 3 907 | 2 501 | ||||||
16 | 9 | 2 | 233.68 | 47.46 | 6 509 | 6 405 | 3 793 | 3 689 | |
1 | 444.73 | 12 043 | 6 527 | ||||||
17 | 16 | 2 | 1 511.55 | 48.86 | 19 531 | 19 429 | 10 201 | 10 099 | |
1 | 2 955.88 | 显存不足 | 19 553 | ||||||
20 | 15 | 2 | 1 875.13 | 49.18 | 21 577 | 21 475 | 11 317 | 11 215 | |
1 | 3 689.83 | 显存不足 | 21 599 |
1 | 周啟航, 刘延芳, 齐乃明, 等. 基于反预警的反拦截中段规避突防策略[J]. 航空学报, 2017, 38(1): 319922. |
ZHOU Q H, LIU Y F, QI N M, et al. Anti-warning-based anti-interception avoiding penetration strategy in midcourse[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 319922 (in Chinese). | |
2 | YANG C J, WU J, LIU G Q, et al. Ballistic missile maneuver penetration based on reinforcement learning[C]∥ 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC). Piscataway: IEEE Press, 2020: 1-5. |
3 | 樊博璇, 陈桂明, 林洪涛. 弹道导弹中段反应式机动突防规避策略[J/OL]. 兵工学报, (2021-11-29)[2022-08-23]. . |
FAN B X, CHEN G M, LIN H T. Mid-course reactive maneuver penetration and evading strategy of ballistic missile[J/OL]. Acta Armamentarii, (2021-11-29)[2022-08-23]. (in Chinese). | |
4 | JIANG L, NAN Y, LI Z H. Realizing midcourse penetration with deep reinforcement learning[J]. IEEE Access, 2021, 9: 89812-89822. |
5 | XIAN Y, REN L L, XU Y J, et al. Impact point prediction guidance of ballistic missile in high maneuver penetration condition[J/OL]. Defence Technology, (2022-06-13)[2022-08-23]. . |
6 | DRENICK R. The perturbation calculus in missile ballistics[J]. Journal of the Franklin Institute, 1951, 251(4): 423-436. |
7 | PADHI R. An optimal explicit guidance scheme for ballistic missiles with solid motors[C]∥ Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 1999: 1006-1016. |
8 | BURCHETT B, COSTELLO M. Model predictive lateral pulse jet control of an atmospheric rocket[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(5): 860-867. |
9 | ZHANG X, YAO X X, ZHENG Q S. Impact point prediction guidance based on iterative process for dual-spin projectile with fixed canards[J]. Chinese Journal of Aeronautics, 2019, 32(8): 1967-1981. |
10 | 杨泗智, 龚春林, 郝波, 等. 基于落点预测的高旋火箭弹弹道修正算法[J]. 航空学报, 2020, 41(2): 323421. |
YANG S Z, GONG C L, HAO B, et al. Ballistic trajectory correction algorithms of high-spin rocket based on impact point prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 323421 (in Chinese). | |
11 | ZHANG X, LEI H M, LI J, et al. Ballistic missile trajectory prediction and the solution algorithms for impact point prediction[C]∥ Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2015: 879-883. |
12 | 牛云. 椭圆弹道射程角和飞行时间公式的一种推导方法[J]. 国防科技大学学报, 1990, 12(2): 55-57. |
NIU Y. A method for deducing the formulas of the range angle and the flying time with the elliptical orbit[J]. Journal of National University of Defense Technology, 1990, 12(2): 55-57 (in Chinese). | |
13 | 任萱. 自由飞行时摄动方程的状态转移矩阵的解析解[J].中国空间科学技术,1983, 3(1):1-16. |
REN X. An state transition analytical solution for free flight perturbation equations [J]. Chinese Space Science and Technology, 1983,3(1):1-16 (in Chinese). | |
14 | 郑伟. 地球物理摄动因素对远程弹道导弹命中精度的影响分析及补偿方法研究[D]. 长沙: 国防科学技术大学, 2006. |
ZHENG W. Analysis on the influence of geophysical perturbation factors on the hit accuracy of long-range ballistic missiles and research on compensation methods[D]. Changsha: National University of Defense Technology, 2006 (in Chinese). | |
15 | 郑伟, 汤国建. 弹道导弹自由段解算的等高约束解析解[J]. 宇航学报, 2007, 28(2): 269-272. |
ZHENG W, TANG G J. Contour restricted analytical solution for free flight trajectory of ballistic missile[J]. Journal of Astronautics, 2007, 28(2): 269-272 (in Chinese). | |
16 | WANG L, ZHENG W, ZHOU X. Orbit state deviation prediction model with second-order correction due to the J2 term[J]. Journal of Physics: Conference Series, 2018, 1074: 012104. |
17 | 王磊. 基于状态空间摄动法的战略导弹弹道快速预报与制导方法研究[D]. 长沙: 国防科技大学, 2018. |
WANG L. Fast trajectory prediction and guidance algorithm for strategic missiles based on state space perturbation method[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). | |
18 | 李晓明. 经典f、g级数的修正法[J]. 国防科技大学学报, 1991, 13(2): 59-67. |
LI X M. A correcting method for classical f and g series[J]. Journal of National University of Defense Technology, 1991, 13(2): 59-67 (in Chinese). | |
19 | 朱龙根. 改进的Barrar型中间轨道: 远程弹道飞行器自由飞行段的解析解[J]. 国防科技大学学报, 1985, 7(2): 67-82. |
ZHU L G. An improved barrar—type intermediate orbit analytic solutions for free flight trajectory of long—range ballistic vehicle[J]. Journal of National University of Defense Technology, 1985, 7(2): 67-82 (in Chinese). | |
20 | 李连仲. 弹道飞行器自由飞行轨道的解析解法[J].宇航学报,1982,13 (1):1-17. |
LI L Z. An analytic method for solving the equations of free flight trajectory of ballistic vehicle[J]. Journal of Astronautics,1982,13(1): 1-17 (in Chinese). | |
21 | 常晓华. 考虑地球非球形引力摄动影响的自由段弹道解析解[J]. 国防科技大学学报, 2018, 40(4): 80-86. |
CHANG X H. Analytical solution for free flight trajectory considering earth non-spherical gravitation perturbation[J]. Journal of National University of Defense Technology, 2018, 40(4): 80-86 (in Chinese). | |
22 | KOZAI Y. The motion of a close earth satellite[J]. The Astronomical Journal, 1959, 64(9): 367-377. |
23 | WANG Z J, ZHANG J Z, WEI W. Deep learning based missile trajectory prediction[C]∥ 2020 3rd International Conference on Unmanned Systems (ICUS). Piscataway: IEEE Press, 2020: 474-478. |
24 | 王森. 基于机器学习的弹道落点预测研究[D]. 南京: 南京理工大学, 2020. |
WANG S. Study on impact point prediction based on machine learning[D]. Nanjing: Nanjing University of Science and Technology, 2020 (in Chinese). | |
25 | 余跃, 王宏伦. 基于深度学习的高超声速飞行器再入预测校正容错制导[J]. 兵工学报, 2020, 41(4): 656-669. |
YU Y, WANG H L. Deep learning-based reentry predictor-corrector fault-tolerant guidance for hypersonic vehicles[J]. Acta Armamentarii, 2020, 41(4): 656-669 (in Chinese). | |
26 | 赵捍东, 黄鑫, 马焱. 基于神经网络补偿的线性弹道落点预报方法[J]. 探测与控制学报, 2017, 39(4): 96-102, 107. |
ZHAO H D, HUANG X, MA Y. Impact point prediction method of linear trajectory based on neural network compensation[J]. Journal of Detection & Control, 2017, 39(4): 96-102, 107 (in Chinese). | |
27 | SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 111-121. |
28 | WILAMOWSKI B M, YU H. Improved computation for Levenberg-Marquardt training[J]. IEEE Transactions on Neural Networks, 2010, 21(6): 930-937. |
29 | 魏倩, 蔡远利. 一种基于神经网络的中制导改进算法[J]. 西安交通大学学报, 2016, 50(7): 125-130. |
WEI Q, CAI Y L. A modified algorithm on the midcourse guidance based on BP neural network[J]. Journal of Xi’an Jiaotong University, 2016, 50(7): 125-130 (in Chinese). | |
30 | JI R P, LIANG Y, XU L F, et al. Trajectory prediction of ballistic missiles using Gaussian process error model[J]. Chinese Journal of Aeronautics, 2022, 35(1): 458-469. |
31 | 鲜勇, 李邦杰, 雷刚, 等. 弹道导弹精度分析方法[M]. 长沙: 国防科技大学出版社, 2012. |
XIAN Y, LI B J, LEI G, et al. Ballistic missile precision analysis method[M]. Changsha: National University of Defense Technology Press, 2012 (in Chinese). | |
32 | 张金槐. 远程火箭精度分析与评估[M]. 长沙: 国防科技大学出版社, 1995. |
ZHANG J H. Accuracy evaluation and analysis of long range rocket[M]. Changsha: National University of Defense Technology Press, 1995 (in Chinese). | |
33 | 王文龙. 大气风场模型研究及应用[D]. 长沙: 国防科技大学, 2009. |
WANG W L. Atmospheric wind field modeling and its application[D]. Changsha: National University of Defense Technology, 2009 (in Chinese). | |
34 | HEATH M T. Scientific computing: An introductory survey[M]. New York: McGraw-Hill Inc, 2005. |
35 | CURTIS H D. Orbital maneuvers[M]∥ Orbital Mechanics for Engineering Students. Amsterdam: Elsevier, 2014: 299-365. |
36 | 张毅, 肖龙旭, 王顺宏. 弹道导弹弹道学[M]. 长沙, 国防科技大学出版社, 1999 (in Chinese). |
ZHANG Y, XIAO L X, WANG S H. Missile ballistic[M]. Changsha: National University of Defense Technology Press, 1999 (in Chinese). | |
37 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778. |
38 | 郭玮林, 鲜勇, 张大巧, 等. 高超声速飞行器助推段弹道快速计算方法[J]. 中国惯性技术学报, 2018, 26(1): 109-114. |
GUO W L, XIAN Y, ZHANG D Q, et al. Fast calculation method of booster trajectory for hypersonic vehicle[J]. Journal of Chinese Inertial Technology, 2018, 26(1): 109-114 (in Chinese). | |
39 | 姚琳怡. 基于强化学习的高速公路项目级养护决策研究[D]. 南京: 东南大学, 2019. |
YAO L Y. Research on project level decision-making of highway asphalt pavement maintenance based on reinforcement learning[D]. Nanjing: Southeast University, 2019 (in Chinese). | |
40 | MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. |
41 | HAGAN M T, MENHAJ M B. Training feedforward networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks, 1994, 5(6): 989-993. |
42 | DUCHI J C, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12: 2121-2159. |
43 | RUDER S. An overview of gradient descent optimization algorithms[DB/OL]. arXiv preprint: 1609.04747,2016. . |
44 | KINGMA D P, BA J L. Adam: A method for stochastic optimization[C]∥ International Conference on Learning Representations. 2015: 1-13. |
[1] | 马菲, 张琼, 赖培军, 岳一笛. 基于BP神经网络的试飞训练安全性量化模型[J]. 航空学报, 2024, 45(5): 529957-529957. |
[2] | 倪育德, 闫苗玉, 刘瑞华. 基于DOA-BP神经网络的电离层TEC短期预测[J]. 航空学报, 2024, 45(4): 328707-328707. |
[3] | 李忠智, 马金毅, 艾剑良, 董一群. 拟VGG16网络的航空传感器故障检测分类[J]. 航空学报, 2023, 44(S1): 727615-727615. |
[4] | 刘武, 吴云燕, 刘玮, 田明明, 黄天鹏. 考虑未知扰动的RLV再入鲁棒容错姿态控制[J]. 航空学报, 2023, 44(S1): 727787-727787. |
[5] | 刘晨阳, 吴大伟, 郭一泽, 吕欣赛, 周佳妮, 邵书义. 不确定强耦合下四旋翼姿态鲁棒自适应控制[J]. 航空学报, 2023, 44(S1): 727645-727645. |
[6] | 王志凯, 陈盛, 范玮. 神经网络宽度对燃烧室排放预测的影响[J]. 航空学报, 2023, 44(5): 126816-126816. |
[7] | 何磊, 钱炜祺, 董康生, 易贤, 柴聪聪. 基于卷积神经网络的结冰翼型气动特性建模[J]. 航空学报, 2023, 44(5): 126434-126434. |
[8] | 王宏伦, 王延祥, 刘一恒. 基于轨迹映射的无人机拖曳式空中回收轨迹优化[J]. 航空学报, 2023, 44(20): 628775-628775. |
[9] | 朱祥维, 沈丹, 肖凯, 马岳鑫, 廖祥, 古富强, 余芳文, 高柯夫, 刘经南. 类脑导航的机理、算法、实现与展望[J]. 航空学报, 2023, 44(19): 28569-028569. |
[10] | 岳承磊, 汪雪川, 岳晓奎, 宋婷. 基于逆强化学习的航天器交会对接方法[J]. 航空学报, 2023, 44(19): 328420-328420. |
[11] | 李怀璐, 王旭, 王霄, 赵彤, 张伟伟. 大迎角机动飞行的气动力建模与飞行仿真[J]. 航空学报, 2023, 44(19): 128410-128410. |
[12] | 梁益铭, 李广宁, 徐敏. 基于机器学习的智能控制数值虚拟飞行方法[J]. 航空学报, 2023, 44(17): 128098-81280986. |
[13] | 宋玉存, 葛泉波, 朱军龙, 陆振宇. 基于梯度差自适应学习率优化的改进YOLOX目标检测算法[J]. 航空学报, 2023, 44(14): 327951-327951. |
[14] | 董磊, 陈泓兵, 陈曦, 赵长啸. 基于DQN的单一飞行员驾驶模式分布式多智能体联盟任务分配策略[J]. 航空学报, 2023, 44(13): 327895-327895. |
[15] | 王子玲, 熊振宇, 顾祥岐. 可见光与SAR多源遥感图像关联学习算法[J]. 航空学报, 2022, 43(S1): 727239-727239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学