[1] 崔淑梅, 匡志, 杜博超, 等. 基于自抗扰控制原理的全电飞机用永磁同步电机转速闭环控制[J]. 电工技术学报, 2017, 32(S1):107-115. CUI S M, KUANG Z, DU B C, et al. Speed closed-loop control of permanent magnet synchronous motor for all-electric aircraft applications based on active disturbance rejection controller[J]. Transactions of China Electrotechnical Society, 2017, 32(S1):107-115(in Chinese). [2] 刘春强, 骆光照, 涂文聪. 航空机电作动永磁同步电机自抗扰控制研究综述[J]. 电气工程学报, 2021, 16(4):12-24. LIU C Q, LUO G Z, TU W C. Survey on active disturbance rejection control of permanent magnet synchronous motor for aviation electro-mechanical actuator[J]. Journal of Electrical Engineering, 2021, 16(4):12-24(in Chinese). [3] RODRIGUEZ J, GARCIA C, MORA A, et al. Latest advances of model predictive control in electrical drives-part I:Basic concepts and advanced strategies[J]. IEEE Transactions on Power Electronics, 2022, 37(4):3927-3942. [4] VAZQUEZ S, RODRIGUEZ J, RIVERA M, et al. Model predictive control for power converters and drives:Advances and trends[C]//IEEE Transactions on Industrial Electronics. Piscataway:IEEE Press, 2016:935-947. [5] KOUR S, CORTES P, VARGAS R, et al. Model predictive control-a simple and powerful mothed to control power converters[J]. IEEE Transactions on Industrial Electronics, 2008:56(6):1826-1838. [6] ANDERSSON A, THIRINGER T. Assessment of an improved finite control set model predictive current controller for automotive propulsion applications[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1):91-100. [7] GEYER T, QUEVEDO D E. Performance of multistep finite control set model predictive control for power electronics[J]. IEEE Transactions on Power Electronics, 2015, 30(3):1633-1644. [8] WANG F X, LI S H, MEI X Z, et al. Model-based predictive direct control strategies for electrical drives:An experimental evaluation of PTC and PCC methods[J]. IEEE Transactions on Industrial Informatics, 2015, 11(3):671-681. [9] YAN L M, WANG F X. Observer-predictor-based predictive torque control of induction machine for robustness improvement[J]. IEEE Transactions on Power Electronics, 2021, 36(8):9477-9486. [10] YAN L M, WANG F X, TAO P, et al. Robust predictive torque control of permanent magnet synchronous machine using discrete hybrid prediction model[J]. IEEE Transactions on Energy Conversion, 2020, 35(4):2240-2248. [11] ZHANG Y C, YANG H T. Two-vector-based model predictive torque control without weighting factors for induction motor drives[J]. IEEE Transactions on Power Electronics, 2016, 31(2):1381-1390. [12] WANG F X, XIE H T, CHEN Q, et al. Parallel predictive torque control for induction machines without weighting factors[J]. IEEE Transactions on Power Electronics, 2020, 35(2):1779-1788. [13] WANG F X, WANG J X, KENNEL R M, et al. Fast speed control of AC machines without the proportional-integral controller:Using an extended high-gain state observer[J]. IEEE Transactions on Power Electronics, 2019, 34(9):9006-9015. [14] GUAZZELLI P R U, DE ANDRADE PEREIRA W C, DE OLIVEIRA C M R, et al. Weighting factors optimization of predictive torque control of induction motor by multiobjective genetic algorithm[J]. IEEE Transactions on Power Electronics, 2019, 34(7):6628-6638. [15] BHOWATE A, AWARE M, SHARMA S. Predictive torque control with online weighting factor computation technique to improve performance of induction motor drive in low speed region[J]. IEEE Access, 2019, 7:42309-42321. [16] MIRANDA H, CORTES P, YUZ J I, et al. Predictive torque control of induction machines based on state-space models[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6):1916-1924. [17] RUBINO S, BOJOI R, ODHANO S A, et al. Model predictive direct flux vector control of multi-three-phase induction motor drives[J]. IEEE Transactions on Industry Applications, 2018, 54(5):4394-4404. [18] SONG Z F, MA X H, ZHANG R. Enhanced finite-control-set model predictive flux control of permanent magnet synchronous machines with minimum torque ripples[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9):7804-7813. [19] GONG C, HU Y H, MA M Y, et al. Novel analytical weighting factor tuning strategy based on state normalization and variable sensitivity balance for PMSM FCS-MPTC[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3):1690-1694. [20] ROJAS C A, RODRIGUEZ J, VILLARROEL F, et al. Predictive torque and flux control without weighting factors[J]. IEEE Transactions on Industrial Electronics, 2013, 60(2):681-690. [21] NORAMBUENA M, RODRIGUEZ J, ZHANG Z B, et al. A very simple strategy for high-quality performance of AC machines using model predictive control[J]. IEEE Transactions on Power Electronics, 2019, 34(1):794-800. [22] MACHADO O, MARTÍN P, RODRÍGUEZ F J, et al. A neural network-based dynamic cost function for the implementation of a predictive current controller[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6):2946-2955. [23] ROJAS C A, RODRIGUEZ J R, KOURO S, et al. Multiobjective fuzzy-decision-making predictive torque control for an induction motor drive[J]. IEEE Transactions on Power Electronics, 2017, 32(8):6245-6260. [24] WANG F X, LI J X, LI Z, et al. Design of model predictive control weighting factors for PMSM using Gaussian distribution-based particle swarm optimization[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11):10935-10946. [25] CORTES P, KOURO S, LA ROCCA B, et al. Guidelines for weighting factors design in model predictive control of power converters and drives[C]//2009 IEEE International Conference on Industrial Technology. Piscataway:IEEE Press,2009:1-7. [26] KARAMANAKOS P, GEYER T. Model predictive torque and flux control minimizing current distortions[J]. IEEE Transactions on Power Electronics, 2019, 34(3):2007-2012. [27] YAN L M, DOU M F, HUA Z G. Disturbance compensation-based model predictive flux control of SPMSM with optimal duty cycle[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(3):18721882. [28] ZHANG Y C, ZHANG B Y, YANG H T, et al. Generalized sequential model predictive control of IM drives with field-weakening ability[J]. IEEE Transactions on Power Electronics, 2019, 34(9):8944-8955. |