航空学报 > 2022, Vol. 43 Issue (S2): 124-137   doi: 10.7527/S1000-6893.2022.27728

高超声速升力体迎风面精细化降热优化设计

李昊歌, 杨华(), 杨雨欣, 陈伟芳   

  1. 浙江大学 航空航天学院,杭州 310027
  • 收稿日期:2022-06-30 修回日期:2022-07-28 接受日期:2022-08-24 出版日期:2022-12-25 发布日期:2022-09-13
  • 通讯作者: 杨华 E-mail:yhsaa@zju.edu.cn
  • 基金资助:
    国家自然科学基金(U20B2007)

Refinement optimization design for heat reduction on windward surface of hypersonic lifting body

Haoge LI, Hua YANG(), Yuxin YANG, Weifang CHEN   

  1. School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China
  • Received:2022-06-30 Revised:2022-07-28 Accepted:2022-08-24 Online:2022-12-25 Published:2022-09-13
  • Contact: Hua YANG E-mail:yhsaa@zju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U20B2007)

摘要:

高超声速飞行器以小攻角飞行时,由于激波干扰,迎风面沿流向出现条带状高热流区,不利于机体热防护系统的设计。针对在50 km高度以马赫数17攻角8°状态飞行的升力体,开展气动力热综合优化研究。采用连续伴随方法进行气动力热特性参数的物面一阶灵敏度分析,提出结合气动灵敏度的贝塞尔自由变形参数化方法,对控制体和设计空间进行优化调整,进而提升气动全局优化方法。以驻点热流、有效装填空间、升阻比和机体长宽尺寸包络为约束,为满足高超声速飞行器的气动防热和隔热需求,分别以降低迎风面条带热流率和沿展向外推条带位置为目标,对迎风面外形开展单/多目标多约束气动全局优化。采用构建的参数化方法,经单目标寻优,迎风面条带热流峰值的降幅提升36%,条带位置外推量由19.7%提高至21.6%;多目标最优解集的物面热流率整体进一步下降,Pareto前沿收缩并向前推进,更趋最优解,实现了升力体气动力热精细化设计。

关键词: 升力体, 高超声速, 气动设计, 全局优化, 气动热, 灵敏度分析, 参数化

Abstract:

When hypersonic vehicle flies at a certain angle of attack, shock wave interaction causes banded high heat flux regions along the flow direction on the windward surface, imposing an adverse effect on the design of thermal protection systems. We investigate the aerodynamic thermal optimization of a lifting body flying at Mach number of 17 and an angle of attack of 8° at 50 km altitude. To improve the aerodynamic global optimization design framework, the continuous adjoint method is firstly adopted to analyze the first-order surface sensitivity of aerodynamic force and thermal characteristic parameters, and the Bèzier free-form deformation method for parameterization based on sensitivity analysis is then proposed. Specifically, the control lattice and design space are both adjusted using this method. To meet the aerodynamic heat protection and thermal insulation requirements of hypersonic vehicles, the single and multi-objective aerodynamic global optimization of the windward side shape is performed with the objectives of heat reduction of banded high heat flux regions on the windward side and spanwise movement of the banded regions outwards. The constraints include stagnation heat flux, effective inner volume, lift-to-drag ratio, length and width. After the single-objective optimization, the decline degree of the peak value of the heat flux on the banded region is increased by 36%, and movement of the spanwise location of banded regions is enhanced from 19.7% up to 21.6% using the proposed parameterization method. In terms of multi-objective design, the overall decrease in heat flux of the optimal solution sets is observed using the parameterization method based on sensitivity analysis, and the Pareto front shrinks and advances towards the optimum, achieving the aerodynamic and thermal refinement design of the lifting body.

Key words: lifting body, hypersonic, aerodynamic design, global optimization, aerodynamic heating, sensitivity analysis, parameterization

中图分类号: