1 |
安复兴, 李磊, 苏伟, 等. 高超声速飞行器气动设计中的若干关键问题[J]. 中国科学: 物理学 力学 天文学, 2021, 51(10): 6-25.
|
|
AN F X, LI L, SU W, et al. Key issues in hypersonic vehicle aerodynamic design[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(10): 6-25 (in Chinese).
|
2 |
LANDON M, HALL D, UDY J, et al. Automatic supersonic/hypersonic aerodynamic shape optimization: AIAA-1994-1898[R]. Reston: AIAA, 1994.
|
3 |
ZHANG B, FENG Z W, XU B T, et al. Efficient aerodynamic shape optimization of the hypersonic lifting body based on free form deformation technique[J]. IEEE Access, 7: 147991-148003.
|
4 |
ZHANG T T, WANG Z G, HUANG W, et al. Parameterization and optimization of hypersonic-gliding vehicle configurations during conceptual design[J]. Aerospace Science and Technology, 2016, 58: 225-234.
|
5 |
夏陈超. 基于CFD的飞行器高保真度气动外形优化设计方法[D]. 杭州: 浙江大学, 2016: 124-128.
|
|
XIA C C. High-fidelity aerodynamic shape optimization method of aircraft based on computational fluid dynamics[D]. Hangzhou: Zhejiang University, 2016: 124-128 (in Chinese).
|
6 |
MA Y, YANG T, FENG Z W, et al. Hypersonic lifting body aerodynamic shape optimization based on the multiobjective evolutionary algorithm based on decomposition[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(7): 1246-1266.
|
7 |
DI GIORGIO S, QUAGLIARELLA D, PEZZELLA G, et al. An aerothermodynamic design optimization framework for hypersonic vehicles[J]. Aerospace Science and Technology, 2019, 84: 339-347.
|
8 |
王荣, 张学军, 纪楚群, 等. 基于高效数值方法的一种高超声速飞行器外形气动力/热综合优化设计研究[J]. 空气动力学学报, 2014, 32(5): 618-622, 633.
|
|
WANG R, ZHANG X J, JI C Q, et al. Aerodynamic heat and force optimization for a hypersonic vehicle based on effective space marching and stream trace methods[J]. Acta Aerodynamica Sinica, 2014, 32(5): 618-622, 633 (in Chinese).
|
9 |
冯毅, 刘深深, 卢风顺, 等. 一种可重复使用天地往返升力体飞行器概念及其气动布局优化设计研究[J]. 空气动力学学报, 2017, 35(4): 563-571.
|
|
FENG Y, LIU S S, LU F S, et al. Study on a new RLV lifting body concept and its aerodynamic configuration optimization design[J]. Acta Aerodynamica Sinica, 2017, 35(4): 563-571 (in Chinese).
|
10 |
EYI S N. Aerothermodynamic design optimization in hypersonic flows[C]∥49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013.
|
11 |
EYI S N, HANQUIST K M, BOYD I D. Shape optimization of reentry vehicles to minimize heat loading: AIAA-2019-0973[R]. Reston: AIAA, 2019.
|
12 |
INGER G R. Non-equilibrium boundary layer effects on the aerodynamic heating of hypersonic vehicles[J]. Acta Astronautica, 1995, 36(4): 205-216.
|
13 |
XIA C C, TAO Y P, JIANG T T, et al. Multiobjective shape optimization of a hypersonic lifting body using a correlation-based transition model[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(12): 2220-2232.
|
14 |
ATKINSON M, POGGIE J, CAMBEROS J. Hypersonic flow computations for an elliptic cone at high angle of incidence[J]. Journal of Spacecraft and Rockets, 2012, 49(3): 496-506.
|
15 |
MASTERS D A, POOLE D J, TAYLOR N J, et al. Impact of shape parameterisation on aerodynamic optimisation of benchmark problem: AIAA-2016-1544[R]. Reston: AIAA, 2016.
|
16 |
JAMESON A. Aerodynamic shape optimization using the adjoint method[R]. Lectures at the Von Karman Institute. Brussels, 2003.
|
17 |
COPELAND S R, PALACIOS F, ALONSO J J. Adjoint-based aerothermodynamic shape design of hypersonic vehicles in non-equilibrium flows: AIAA-2014-0513[R]. Reston: AIAA, 2014.
|
18 |
EYI S N, YUMUŞAK M. Aerothermodynamic shape optimization of hypersonic blunt bodies[J]. Engineering Optimization, 2015, 47(7): 909-926.
|
19 |
EYI S N, HANQUIST K M, BOYD I D. Aerothermodynamic design optimization of hypersonic vehicles[J]. Journal of Thermophysics and Heat Transfer, 2018, 33(2): 392-406.
|
20 |
KIM J H, KIM J W, KIM K Y. Axial-flow ventilation fan design through multi-objective optimization to enhance aerodynamic performance[J]. Journal of Fluids Engineering, 2011, 133(10): 101101.
|
21 |
CATALANO L A, QUAGLIARELLA D, VITAGLIANO P L. Aerodynamic shape design using hybrid evolutionary computing and multigrid-aided finite-difference evaluation of flow sensitivities[J]. Engineering Computations, 2015, 32(2): 178-210.
|
22 |
韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344.
|
|
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese).
|
23 |
韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
|
|
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese).
|
24 |
CHUNG H S, ALONSO J. Using gradients to construct cokriging approximation models for high-dimensional design optimization problems: AIAA-2002-0317[R]. Reston: AIAA, 2002.
|
25 |
LAURENCEAU J, SAGAUT P. Building efficient response surfaces of aerodynamic functions with kriging and cokriging[J]. AIAA Journal, 2008, 46(2): 498-507.
|
26 |
KIM K H, KIM C, RHO O H. Methods for the accurate computations of hypersonic flows[J]. Journal of Computational Physics, 2001, 174(1): 38-80.
|
27 |
POOLE D J, ALLEN C B, RENDALL T. Control point-based aerodynamic shape optimization applied to AIAA ADODG test cases: AIAA-2015-1947[R]. Reston: AIAA, 2015.
|
28 |
POOLE D J, ALLEN C B, RENDALL T. Application of control point-based aerodynamic shape optimization to two-dimensional drag minimization: AIAA-2014-0413[R]. Reston: AIAA, 2014.
|
29 |
POOLE D J, ALLEN C B, RENDALL T. A constrained global optimization framework: AIAA-2014-2034[R]. Reston: AIAA, 2014.
|
30 |
于广元. 基于自由变形技术的伴随方法优化设计大曲率扩压通道[D]. 南京: 南京航空航天大学, 2014: 133.
|
|
YU G Y. Aerodynamic design of large curvature diffuser channel by using adjoint method based on FFD technique[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 133 (in Chinese).
|
31 |
孙岩松. 带几何约束条件的空间变形方法[D]. 大连: 大连理工大学, 2002: 67.
|
|
SUN Y S. Spatial deformation method with geometric constraints[D]. Dalian: Dalian University of Technology, 2002: 67 (in Chinese).
|
32 |
唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术[J]. 航空学报, 2015, 36(5): 1480-1490.
|
|
TANG J, DENG Y Q, MA M S, et al. Parameterization and grid deformation techniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1480-1490 (in Chinese).
|
33 |
TASHNIZI E S, TAHERI A A, HEKMAT M H. Investigation of the adjoint method in aerodynamic optimization using various shape parameterization techniques[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2010, 32(2): 176-186.
|
34 |
LUKACZYK T W, CONSTANTINE P, PALACIOS F, et al. Active subspaces for shape optimization: AIAA-2014-1171[R]. Reston: AIAA, 2014.
|
35 |
LI H G, LI C R, CHEN W F, et al. Sensitivity-based parameterization for aerodynamic shape global optimization[J]. Journal of Aerospace Engineering, 2022, 35(2): 4021127.
|
36 |
SRINATH D N, MITTAL S. Optimal airfoil shapes for low Reynolds number flows[J]. International Journal for Numerical Methods in Fluids, 2009, 61(4): 355-381.
|
37 |
JEONG S, OBAYASHI S, YAMAMOTO K. A Kriging-based probabilistic optimization method with an adaptive search region[J]. Engineering Optimization, 2006, 38(5): 541-555.
|
38 |
VERMA S, PANT M, SNASEL V. A comprehensive review on NSGA-Ⅱ for multi-objective combinatorial optimization problems[J]. IEEE Access, 9: 57757-57791.
|
39 |
HUANG J, YAO W X. Multi-objective design optimization of blunt body with spike and aerodisk in hypersonic flow[J]. Aerospace Science and Technology, 2019, 93: 105122.
|
40 |
夏陈超, 邵纯, 姜婷婷, 等. 基于FFD方法的高超声速升力体气动优化[J]. 固体火箭技术, 2015, 38(6): 751-756.
|
|
XIA C C, SHAO C, JIANG T T, et al. Aerodynamic optimization of hypersonic lifting body based on FFD method[J]. Journal of Solid Rocket Technology, 2015, 38(6): 751-756 (in Chinese).
|
41 |
YANG F, CHEN Z L. Multi-objective aerodynamic optimization using active multi-output Gaussian process and mesh deformation method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(4): 767-776.
|