[1] AGARWAL R. Environmentally responsible air and ground transportation[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011. [2] DI SANTE R. Fibre optic sensors for structural health monitoring of aircraft composite structures:Recent advances and applications[J]. Sensors, 2015, 15(8):18666-18713. [3] GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5):369-391. [4] KAWAI R, FRIEDMAN D, SERRANO L. Blended wing body (BWB) boundary layer ingestion (BLI) inlet configuration and system studies:NASA/CR-2006-214534[R]. Washington D.C.:NASA, 2013. [5] DRELA M. Development of the D8 transport configuration[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011. [6] GUR O, BHATIA M, SCHETZ J A, et al. Design optimization of a truss-braced-wing transonic transport aircraft[J]. Journal of Aircraft, 2010, 47(6):1907-1917. [7] VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions:Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91. [8] RONALD D. Overview of laminar flow control:NASA/TP-1998-208705[R]. Washington D.C.:NASA, 1998. [9] STREIT T, HORSTMANN K, SCHRAUF G, et al. Complementary numerical and experimental data analysis of the ETW telfona pathfinder wing transition tests[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011. [10] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52. [11] COLLIER J F Jr. An overview of recent subsonic laminar flow control flight experi-ments[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston:AIAA, 1993. [12] HENKE R. "A 320 HLF Fin" flight tests completed[J]. Air & Space Europe, 1999, 1(2):76-79. [13] 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12):122219. CHEN J, SONG W P, ZHU Z,et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122219(in Chinese). [14] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y,et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese). [15] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q,et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese). [16] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced Kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346. [17] LYU Z J, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5):1604-1617. [18] HE P, MADER C A, MARTINS J R R A, et al. DAFoam:An open-source adjoint framework for multidisciplinary design optimization with OpenFOAM[J]. AIAA Journal, 2020, 58(3):1304-1319. [19] DRIVER J, ZINGG D W. Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction[J]. AIAA Journal, 2007, 45(8):1810-1818. [20] RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11):3321-3337. [21] SHI Y Y, MADER C A, HE S C, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11):4702-4722. [22] SHI Y Y, MADER C A, MARTINS J R R A. Natural laminar flow wing optimization using a discrete adjoint approach[J]. Structural and Multidisciplinary Optimization, 2021, 64(2):541-562. [23] 史亚云. 基于离散伴随的层流翼优化设计方法及应用研究[D]. 西安:西北工业大学, 2019. SHI Y Y. Discrete adjoint-based optimization methodology and applied research for laminar flow wing[D]. Xi'an:Northwestern Polytechnical University, 2019(in Chinese). [24] KAYA H, TUNCER I·H. Discrete adjoint-based aerodynamic shape optimization framework for natural laminar flows[J]. AIAA Journal, 2022, 60(1):197-212. [25] CEBECI T, KAUPS K, RAMSEY J. A general method for calculating three-dimensional compressible laminar and turbulent boundary layers on arbitrary wings:NASA-CR-2777[R]. Washington D.C.:NASA, 1977. [26] SHI Y Y, MADER C A, HE S C, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11):4702-4722. [27] GLEYZES C, COUSTEIX J, BONNET J L. A calculation method of leading-edge separation bubbles[M].Numerical and Physical Aspects of Aerodynamic Flows II. Berlin:Springer, 1984:173-192. [28] DRELA M, GILES M B. Viscous-inviscid analysis of transonic and low Reynolds number airfoils[J]. AIAA Journal, 1987, 25(10):1347-1355. [29] SHI Y Y, CAO T S, YANG T H, et al. Correction:Estimation and analysis of hybrid laminar flow control on a transonic experiment[J]. AIAA Journal, 2020, 58(1):118-132. [30] WONG P, MAINA M. Flow control studies for military aircraft applications[C]//2nd AIAA Flow Control Conference. Reston:AIAA, 2004. [31] YANG T H, CHEN Y F, SHI Y Y, et al. Stochastic investigation on the robustness of laminar-flow wings for flight tests[J]. AIAA Journal, 2022, 60(4):2266-2286. [32] YANG T H, ZHONG H, CHEN Y F, et al. Transition prediction and sensitivity analysis for a natural laminar flow wing glove flight experiment[J]. Chinese Journal of Aeronautics, 2021, 34(8):34-47. [33] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615. |